Advanced in vitro exposure systems.

19. Feb. 2020

Differences in cytotoxicity of lung epithelial cells exposed to titanium dioxide nanofibers and nanoparticles: Comparison of air-liquid interface and submerged cellcultures

doi: 10.1016/j.tiv.2020.104798

Autors

Medina-Reyes EI1, Delgado-Buenrostro NL2, Leseman DL3, Déciga-Alcaraz A2, He R4, Gremmer ER3, Fokkens PHB3, Flores-Flores JO5, Cassee FR4, Chirino YI2.
1 Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico. Electronic address: medinaingrid0@gmail.com.
2 Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico.
3 National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
4 National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute of Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
5 Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, CP 04510 Ciudad de México, Mexico

 

The Air-liquid interface (ALI) model has emerged as a closer physiological system that mimics exposure in gaseous and liquid phases. This Study shows that the exposure to TiO2 nanofibers and nanoparticles displays similar toxicity both the ALI and submerged cell cultures, using lung epithelial A549 cells. Additionally, they detected for the first time that TiO2 nanofibers were located into the nucleus.

 

Read more

Comments (0) Number of views (298)

15. Jan. 2020

Use of in vitro 3D tissue models in genotoxicity testing: Strategic fit, validation status and way forward.

Report of the working group from the 7th International Workshop on Genotoxicity Testing (IWGT)

https://doi.org/10.1016/j.mrgentox.2020.503135

Authors
StefanPfuhlera, Janvan Benthemb, RodgerCurrenc, Shareen H.Doakd, MariaDusinskae, MakotoHayashif, Robert H.Heflichg, DarrenKiddh, DavidKirklandi, YangLuanj, GladysOuedraogok, KerstinReisingerl, ToshioSofunim, Frédériquevan Ackern, YingYango, RaffaellaCorvip
a Procter and Gamble, Mason Business Centre, Mason, OH, USA
b National Institute for Public Health and the Environment, Centre for Health Protection, Bilthoven, the Netherlands
c Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
d Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
e Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
f makoto international consulting, Ebina, Japan
g U.S. Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
h Covance Laboratories Ltd, Otley Road, Harrogate, HG3 1PY, UK
i Kirkland Consulting, PO Box 79, Tadcaster, LS24 0AS, UK
j School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
k L’Oréal R&I, Aulnay-sous-bois, France
l Henkel AG & Co KGaA, Duesseldorf, Germany
m Formerly National Institute of Health Sciences, Tokyo, Japan
n Triskelion B.V., Zeist, the Netherlands
o Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, PR China
p European Commission, Joint Research Centre (JRC), Ispra, Italy

 

Highlights
• Extensive progress made in development of 3D organ-based genotoxicity assays.
• 3D culture models represent major exposure routes: dermal, oral, inhalation.
• The 3D skin comet and MN assays are considered mature and sufficiently validated.
• Liver and airway model-based genotoxicity assays show promise but are at early stage.<

Read more

Comments (0) Number of views (333)

27. Nov. 2019

State-of-the-art methods and devices for the generation, exposure, and collection of aerosols from heat-notburn tobacco products

Stéphanie Boué1, Didier Goedertier1, Julia Hoeng1 , Arkadiusz Kuczaj1, Shoaib Majeed1, Carole Mathis1, Anne May2 , Blaine Phillips3, Manuel C Peitsch1, Falk Radtke1, Walter K Schlage4, Wei Teck Tan3 and Patrick Vanscheeuwijck1

1 Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
2 Consultants in Science, Epalinges, Switzerland
3 Philip Morris International (PMI) Research & Development, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore
4 Biology Consultant, Bergisch Gladbach, Germany

 

The VC 24/48 exposure system is being validated for the exposure process of three-dimensional, organotypic cell culture inserts with CS and with aerosols generated from HNB tobacco products and e-liquids.
They aerosol deposition of different CS concentrations as determined by three different approaches were assessed and compared : (1) a WST-1 colorimetric assay; (2) the determination of eight carbonyls trapped in PBS; and (3) QCM-determined particle mass deposition.

 

Read more

Comments (0) Number of views (1227)

17. Nov. 2019

Society of Toxicology's 59th Annual Meeting and ToxExpo

March 15–19, 2020. Anaheim, California, USA

The 2020 scientific program has been designed to maximize exposure to groundbreaking research and opportunities for networking and professional development.

Read more

Comments (0) Number of views (2389)

Categories: Exhibitions

Tags: congress

4. Nov. 2019

Investigation of multiple whole smoke dosimetry techniques using a VITROCELL®VC10® smoke exposure system

https://doi.org/10.1016/j.toxrep.2019.10.011

Brian M. Keysera, Robert Leverettea, Michael Hollingsb, Adam Seymourb, Lesley Reeveb, Wanda Fieldsa
a RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC, 27101, USA1
b Covance Laboratories Ltd., North Yorkshire, UK

 

Highlights
• Investigation of dose-determining methods using the Vitrocell® VC10® system.
• Dose assessment using Quartz Crystal Microbalances (QCM) and aerosol photometers.
• Dose assessment using fluorescence of DMSO-captured smoke constituents.
• QCM, photometer AUC, and DMSO-captured matter were consistent and reproducible

 

Read more

Comments (0) Number of views (1579)

1. Nov. 2019

Electronic Cigarette Vapor With Nicotine Causes Airway Mucociliary Dysfunction Preferentially via TRPA1 Receptors

DOI: 10.1164/rccm.201811-2087OC


Samuel Chung 1 2, Nathalie Baumlin 1 2, John S Dennis 1 2, Robert Moore 2, Sebastian F Salathe 2, Phillip L Whitney 2, Juan Sabater 3, William M Abraham 3, Michael D Kim 1 2, Matthias Salathe 1 2
1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
2Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and.
3Department of Research, Mount Sinai Medical Center, Miami Beach, Florida.
 

The transient receptor potential ankyrin 1 (TRPA1) is a molecular target for vape effects due to its expression in airway epithelia and its reported gating by nicotine, reactive oxidants, and flavors, especially cinnamaldehyde. To test whether nicotine had effects independent of other e-cig vapor constituents, the Vitrocell® CLOUD exposure system was utilized to nebulize fixed nicotine doses onto the apical surface of ALI cultures. A549 cell cultures were exposed to nicotine containing e-cig vapor, produced by the VC-1 smoke exposure robot, in the air-liquid interface.

 

Read more

Comments (0) Number of views (54)

31. Oct. 2019

Deposition efficiency and uniformity of monodisperse solid particle deposition in the Vitrocell® 24/48 Air–Liquid-Interface in vitro exposure system

Aerosol Science and Technology

DOI: 10.1080/02786826.2019.1676877

Michael J. Oldhama , Nicolas Castroa, Jingjie Zhanga, Ali Rostamia, Francesco Luccib, Yezdi Pithawallaa,
Arkadiusz K. Kuczajb,c , I. Gene Gilmand, Pasha Kosachevskye, Julia Hoengb, and K. Monica Leea
aAltria Client Services, Richmond, Virginia, USA; 
bPhilip Morris International Research & Development, Philip Morris Products S.A. (part of Philip Morris International group of companies), Neuchatel, Switzerland; 
cMultiscale Modeling & Simulation, Department of Applied Mathematics, University of Twente, AE Enschede, The Netherlands; 
dEnthalpy Analytical, Durham, North Carolina, USA; eEnthalpy Analytical, Richmond, Virginia, USA

 

Monodispersed solid particles were used to investigate experimental measurement of deposition efficiency, variability of deposition efficiency within and between rows and uniformity of deposition across all cell culture inserts of the Vitrocell 24/48 ALI in vitro exposure system.

 

Read more

Comments (0) Number of views (1340)

25. Oct. 2019

VITROCELL® High Throughput Exposure Module: Deposition and Cytotoxicity of Smoke/Aerosol from Different Tobacco Product Types

User Group Meeting 2019

1Leverette R, 1Keyser B, 2Seymour A, 2Hollings M and 1Bombick B
1Scientific & Regulatory Affairs, RAI Services Company Winston-Salem, NC 27102
2Covance Laboratories Ltd Otley Road, Harrogate, North Yorkshire HG3 1PY, UK

Read more

Comments (0) Number of views (2089)

25. Oct. 2019

New holder for ENDS products for VITROCELL® Smoking Machines and Robots

User Group Meeting 2019

Bastian Gutmann, Tobias Krebs
VITROCELL Systems GmbH 79183 Waldkirch, Germany

The poster shows the new holder for ENDS products

Read more

Comments (0) Number of views (1903)

25. Oct. 2019

Media Inserts for VITROCELL® Exposure Modules 6 and 12 Series

User Group Meeting 2019

Oliver Wisser1, Bastian Gutmann1, Adam Seymour2
1VITROCELL Systems GmbH 79183 Waldkirch, Germany
2Covance Laboratories Ltd Harrogate, UK

The poster shows the new media inserts.

Read more

Comments (0) Number of views (1809)
RSS
12345678910Last
Back to Top