Investigation of multiple whole smoke dosimetry techniques using a VITROCELL®VC10® smoke exposure system

November 4, 2019

Brian M. Keysera, Robert Leverettea, Michael Hollingsb, Adam Seymourb, Lesley Reeveb, Wanda Fieldsa
a RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC, 27101, USA1
b Covance Laboratories Ltd., North Yorkshire, UK


• Investigation of dose-determining methods using the Vitrocell® VC10® system.
• Dose assessment using Quartz Crystal Microbalances (QCM) and aerosol photometers.
• Dose assessment using fluorescence of DMSO-captured smoke constituents.
• QCM, photometer AUC, and DMSO-captured matter were consistent and reproducible


The Vitrocell® VC10® smoke exposure system offers multiple platforms for air liquid interface (ALI) and air agar interface (AAI) exposure that mimic in vivo conditions for assessing toxicological impact of whole smoke using in vitro assays. The aim of this study was to investigate and compare multiple dosimetry techniques that may be employed during combustible cigarette whole smoke exposure using the Vitrocell® VC10® smoking robot. The following techniques were assessed: (1) quartz crystal microbalances (QCMs), (2) aerosol photometers (using area under curve, AUC), and (3) fluorescence of anhydrous dimethyl sulfoxide (DMSO)-captured smoke constituents.
Results showed that each of the dosimetry techniques was able to distinguish different levels of whole smoke airflow in a concentration-related manner. When compared to each other, the three techniques showed a high level of consistency and all were considered efficient tools in quantifying dose during an exposure, although higher variation was observed at the higher airflows tested. Overall, the dosimetry tools investigated here provide effective measures of the whole smoke concentrations tested during the exposure.

Read article

News overview