https://doi.org/10.1186/s12989-020-00355-1
Tuukka Ihantola1 , Sebastiano Di Bucchianico2, Mikko Happo1,3, Mika Ihalainen1, Oskari Uski1, Stefanie Bauer2, Kari Kuuspalo1,4, Olli Sippula1, Jarkko Tissari1, Sebastian Oeder2, Anni Hartikainen1, Teemu J. Rönkkö1, Maria-Viola Martikainen1, Kati Huttunen1, Petra Vartiainen1, Heikki Suhonen1, Miika Kortelainen1, Heikki Lamberg1, Ari Leskinen1,5, Martin Sklorz2,6, Bernhard Michalke7, Marco Dilger8, Carsten Weiss8, Gunnar Dittmar9, Johannes Beckers10,11,12, Martin Irmler10, Jeroen Buters13, Joana Candeias13, Hendryk Czech1,2, Pasi Yli-Pirilä1, Gülcin Abbaszade2, Gert Jakobi2, Jürgen Orasche2, Jürgen Schnelle-Kreis2, Tamara Kanashova6,14, Erwin Karg2, Thorsten Streibel2,6, Johannes Passig6, Henri Hakkarainen1, Jorma Jokiniemi1, Ralf Zimmermann2,6, Maija-Riitta Hirvonen1 and Pasi I. Jalava1
1 Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210 Kuopio, Finland.
2 Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany.
3 Ramboll Finland, P.O.Box 25 Itsehallintokuja 3,FI-02601 Espoo, Finland.
4 Savonia University of applied sciences, Microkatu 1, FI-70210 Kuopio, Finland.
5 Finnish Meteorological Institute, Yliopistonranta 1 F, FI-70210 Kuopio, Finland.
6 Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051 Rostock, Germany.
7 Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany.
8 Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, D-76344 Eggenstein-Leopoldshafen, Germany.
9 Luxembourg institute of health, 1A-B rue Thomas Edison, 1445 Strassen, Luxembourg.
10 Institute of Experimental Genetics (IEG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany.
11 Technical University of Munich, Chair of Experimental Genetics, D-85350 Freising-Weihenstephan, Germany.
12 German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
13 ZAUM – Center of Allergy & Environment, Technical University Munich/Helmholtz Center Munich, Biedersteiner Str. 29, D-80802 Munich, Germany.
14 Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany.
Abstract
Background: Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. Methods: We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A wholebody mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome.