# Cerium oxide nanoparticles air exposure: a comparison study using a human 3D airway model and A549 and Beas-2B cell lines

Ingeborg M. Kooter<sup>1</sup>, Mariska Grollers-Mulderij<sup>1</sup>, Maaike Steenhof<sup>1</sup>, Evert Duistermaat<sup>2</sup>, Frederique van Acker<sup>2</sup>, Yvonne Staal<sup>2</sup>, Eric Schoen<sup>1</sup>, Rob Stierum<sup>1</sup>, Linette Pellis<sup>1</sup>, Frieke Kuper<sup>1</sup>

<sup>1</sup> The Netherlands Organisation for Applied Scientific Research, TNO, Zeist, The Netherlands, ingeborg.kooter@tno.nl

<sup>2</sup> TNO Triskelion, Zeist, the Netherlands

Presenter at SOT2014: Yvonne Staal, e-mail yvonne.staal@tno.triskelion.nl

# **The innovation** for life

#### INTRODUCTION

Human 3D airway models are fully differentiated and functional models of the respiratory epithelium (including metabolic activity, mucus production and cilia beating) and therefore may be positioned in safety evaluation of nanoparticles entering the airways. They are cultured at an air-liquid interface (ALI), allowing relevant exposure via air. It is anticipated that these models may predict a more realistic bioavailability of inhaled compounds.

#### **OBJECTIVE**

To investigate the respiratory effects of nanoparticles, we performed air exposures of nano-sized and micro-sized cerium oxide (respectively nano- $CeO_2$  and micro- $CeO_2$ ) using MucilAir human 3D bronchial model and compared these to nano- $CeO_2$  and micro- $CeO_2$  exposed Beas-2B and A549 cell lines.

In contrast Beas-2B cell line showed an inflammatory (IL-8) and cytotoxicity (LDH) response upon nano-CeO<sub>2</sub> exposure only where MucilAir does not. Both A549 and Beas-2B cell lines showed a dose response in the Comet assay upon nano-CeO<sub>2</sub> exposure only, in contrast to MucilAir (Figure 3).



#### Figure 3: Comet assay response, upper panel =

#### **SUMMARY**

 Table 1. Summary of the results

|       | Parameter             | A549             | Beas-2B                     | MucilAir                    |
|-------|-----------------------|------------------|-----------------------------|-----------------------------|
| Nano  | Oxidative stress: HO1 | -                | -                           | All doses                   |
|       | Inflammation: IL8     | -                | High dose                   | -                           |
|       | Cytotoxicity: LDH     | -                | High dose                   | -                           |
|       | Genotoxicity: Comet   | Dose<br>response | Dose<br>response            | -                           |
|       | Gene expression       |                  | Dose<br>related<br>decrease | Not<br>deter-<br>mined      |
| Micro | Oxidative stress: HO1 | -                | -                           | All doses                   |
|       | Inflammation: IL8     | -                | -                           | -                           |
|       | Cytotoxicity: LDH     | -                | -                           | -                           |
|       | Genotoxicity: Comet   | -                | -                           | -                           |
|       | Gene expression       | -                | Dose<br>related<br>increase | Dose<br>related<br>decrease |

### **METHODS**

Figure 1 shows the experimental set-up.



Figure 1: Experimental set-up

### **RESULTS**

Comparison of cell models showed that MucilAir cells are less affected by the air stream compared to the A549 or BEAS-2B cells (based on IL-8 and LDH). MucilAir cells showed a slight HO-1 response for both nano-CeO<sub>2</sub> and micro-CeO<sub>2</sub> exposure, where cell lines did not (Figure 2).

nano-CeO<sub>2</sub>; lower panel = micro-CeO<sub>2</sub>

Differences between MucilAir and the cell lines are confirmed by the gene expression analyses (PCA analyses, Figure 4). For Beas-2B a higher and significant gene regulation is observed in nano- then in micro-CeO<sub>2</sub> exposed cells. In addition, a dose related decrease is found in the number of genes and induced pathways for nano-CeO<sub>2</sub>, whereas a dose related increase is found for the micro-CeO<sub>2</sub> exposed cells. For MucilAir a dose related decrease was observed upon exposure to micro-CeO<sub>2</sub>.



## CONCLUSION

We conclude that MucilAir human 3D airway model is more resistant to air stream and nano-CeO<sub>2</sub> compared to the cell lines, most likely due to its in vivo relevant and protective morphology (cilia, mucus layer etc.). Results suggest that MucilAir reacts in Tier1, where the cell line Beas-2B represents a Tier2/3 situation upon exposure (Figure 5). Overall the use of human 3D airway models might predict a more realistic response where cell lines might overestimate the effect of nanoparticles.





Figure 2: HO-1 response, upper panel = nano-CeO<sub>2</sub>; lower panel = micro-CeO<sub>2</sub>

A549  $\square$ 

-100 -50 0 50 100 150 PC1 (17,71%)

Figure 4: Gene expression PCA

Figure 5: Hierarchical oxidative stress model (after Li et al.2003)

#### Reference

N. Li et al. Clinical Immunology 109 (2003) 250–265

This work was performed in close collaboration with TNO Triskelon.

