

# Air/liquid Culture and Exposure Technique: Risiken erkennen - Gesundheit schützen **Preliminary Results of a Prevalidation Study**

Smirnova L<sup>1</sup>, Liebsch M<sup>1</sup>, Tharmann J<sup>1</sup>, Pirow R<sup>1</sup>, Luch A<sup>1</sup>, Bauer M<sup>2</sup>, Graebsch C<sup>2</sup>, Linsel G<sup>3</sup>, Siemers R.<sup>3</sup>, Otto C.<sup>3</sup>, Berger-Preiß E.<sup>4</sup>, Kock, H.<sup>4</sup>, Oertel A.<sup>4</sup>, Ritter D.<sup>4</sup>, Knebel, J.<sup>4</sup>

<sup>1</sup>Federal Institute for Risk Assessment (BfR) Unit 37 - Centre for Alternative Methods to Animals Experiments – ZEBET, Berlin Germany; <sup>2</sup>Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany; <sup>3</sup>Federal Institute for Occupational Safety and Health (BAuA), Berlin, Germany; <sup>4</sup>Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany

#### Abstract

The increasing demand for assessing inhalation toxicity hazards calls for new testing strategies comprising both in vitro and in vivo assays. For this purpose, we are currently evaluating the air/liquid interface (ALI) exposure strategy where cells are exposed to toxic gases at the air/liquid interface. The human carcinoma alveolar epithelial cell line A549, grown on microporous membranes, was exposed to selected test atmospheres in a system enabling at the same time steady state nutrification, humidification and direct gas exposure. Under coordination of Fraunhofer ITEM were assessed the intra- and inter-laboratory reproducibility and predictive capacity of the method by characterizing the toxicity of four gases, i.e. NO<sub>2</sub>, SO<sub>2</sub>, formaldehyde, and ozone. The aims of this study are: optimisation and refinement of experimental protocols; generation of standard operating procedures; assessment of reproducibility within and between laboratories; establishment of test acceptance criteria; determination of the in vitro vs. in vivo dose-response relationships. After transfer of the method, optimization of protocols and experimental procedures the four partners started testing of the gases. Each gas together with an online analytical monitoring system was passed from one lab to the next. The test design comprised one hour gas exposure followed by direct determination of cytotoxicity (electrical current exclusion method, CASY®) and genotoxicity (COMET assay). So far, the project has proved satisfying transferability of the test method.

## **Organization and management**



### **ALI-exposure system**





#### **Test gases**

|                                      |                                                                                          |                                                                                                             | Exposure system                                                                                                                                                                                            |                          | Nitrogen dioxide                                                                                                                             | Sulfur dioxide                                                     | Ozone                                                                | Formaldehyde                                                                                               |
|--------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                      | Exposure module for static medium supply (VITROCE                                        | ELL) for o                                                                                                  | ne insert (Falcon, BD) in detail                                                                                                                                                                           | Molecular<br>formula     | NO <sub>2</sub>                                                                                                                              | SO <sub>2</sub>                                                    | <b>O</b> <sub>3</sub>                                                | CH <sub>2</sub> O                                                                                          |
| Exposui                              | e gas                                                                                    |                                                                                                             | a                                                                                                                                                                                                          | Molar mass               | 46 g/mol                                                                                                                                     | 64 g/mol                                                           | 48 g/mol                                                             | 30 g/mol                                                                                                   |
|                                      |                                                                                          |                                                                                                             |                                                                                                                                                                                                            | Toxicity                 | very toxic, corrosive                                                                                                                        | toxic, corrosive                                                   | very toxic, genotox.<br>potential                                    | toxic, probably cancerogenic                                                                               |
| Expos                                | ure gas                                                                                  |                                                                                                             | b<br>c<br>d                                                                                                                                                                                                | MAK <sup>*</sup> Value   | 5 ppm                                                                                                                                        | 0,5 ppm                                                            | 0,1 ppm                                                              | 0,3 ppm                                                                                                    |
| OL                                   | tlet                                                                                     |                                                                                                             |                                                                                                                                                                                                            | Recalculation            | 1 ppm = 1,86<br>mg/m <sup>3</sup> (SATP <sup>+</sup> )                                                                                       | 1 ppm = 5,58<br>mg/m <sup>3</sup> (SATP)                           | 1 ppm = 1,94<br>mg/m <sup>3</sup> (SATP)                             | 1 ppm = 1,21 mg/m <sup>3</sup><br>(SATP)                                                                   |
| Culture m<br>supp<br>Cell cu<br>inse | um<br>re                                                                                 |                                                                                                             | <ul> <li>a Cell culture insert</li> <li>b Exposure atmosphere<br/>(Gases), continuous flow</li> <li>c Cells grown on<br/>microporous membranes</li> <li>d Culture medium<br/>below the membrane</li> </ul> | Source                   | atmosphere,<br>burning of<br>biomass,exhaust<br>gas                                                                                          | atmosphere,<br>burning of S-<br>containing fuels,<br>preservatives | atmosphere, laser<br>printer, copy<br>machine, water<br>purification | atomosphere, motor<br>vehicle, preservative<br>in cosmetic,<br>furniture, cigarette<br>smoke, desinfection |
|                                      |                                                                                          |                                                                                                             |                                                                                                                                                                                                            | Safety and<br>Handling   | causes burns, keep<br>away from<br>combustible<br>material                                                                                   | hazardous<br>reactions with<br>oxidizing agent                     | causes burns, keep<br>away from<br>combustible<br>material, instable | poymerisation to<br>Paraformaldehyde,<br>flammable                                                         |
|                                      |                                                                                          |                                                                                                             |                                                                                                                                                                                                            | + SATP - Standard Ambier | nt Temperatureand Preasure (25 C,                                                                                                            | 1000 Hpa)                                                          |                                                                      |                                                                                                            |
| Work<br>Jan.<br>2008                 | Phase I                                                                                  | or.<br>08                                                                                                   | Phase II                                                                                                                                                                                                   | Sep.<br>2008             |                                                                                                                                              | Phase                                                              | 111                                                                  | Sep.<br>2009                                                                                               |
|                                      | Establishment of technique                                                               |                                                                                                             | tandardisation of exposure technique (ALI-exposure to synthetic air)                                                                                                                                       |                          | Air/liquid exposure to test gases (NO2, SO2, Ozone, Formaldehyde)                                                                            |                                                                    |                                                                      |                                                                                                            |
| F                                    | Preparation and transfer of SOP's D                                                      |                                                                                                             | Development and transfer of online monitoring methodology                                                                                                                                                  |                          | Acquisition of end points, estimation of dosis-response curves, EC50                                                                         |                                                                    |                                                                      |                                                                                                            |
| E<br>(                               | Establishment of cell culture methods cultivation of A549 cells on microporous mebranes) | Refinement and standardisation of SOP's for end point measurement (submerged exposure to H2O2 and Formalin) |                                                                                                                                                                                                            | it<br>malin)             | Determination of inter and intralaboratory variability and transferability<br>Estimation of prediction model for acute inhalation toxicology |                                                                    |                                                                      |                                                                                                            |

## **Experimental results**

1). Cytotoxicity: electrical current exclusion methods



#### 2). Genotoxicity: Comet Assay







# in vitro vs. in vivo

| Gas             | In vitro, EC50  | In vivo, LC50, (Rat) |
|-----------------|-----------------|----------------------|
| NO <sub>2</sub> | 29,9 – 71,7 ppm | 88 ppm/4h            |
| SO <sub>2</sub> | 380 - 931 ppm   | 2520 ppm/4h          |
| Ozone           | 1,58 – 13,7 ppm | 4,8 ppm/4h           |
| Formaldehyde    | 14,7 – 66,1 ppm | 150 ppm/4h           |

## Outlook

0.4 0.2 -

-0.2 -

- Evaluation of intra and inter-laboratories reproducibility and transferability
- Enlargement of databases in further extended prevalidation study: additional test substances and toxicologica end points (e.g. Inflammation)

# - Development of a first prediction model

# Acknowledgments

This project was financially supported by Federal Ministry of Education and Research, Germany [BMBF-0313963]

#### References

M. Aufderheide and U. Mohr. CULTEX - a new system and technique for the cultivation and exposure of cells at the air/liquid interface. Exp Toxic Pathol 1999; 51: 489-490

M. Aufderheide. An efficient approach to study the toxicological effects of complex mixtures. Exp Toxicol Pathol 2008; 163-180.

M. Aufderheide, J.W. Knebel and D. Ritter. A method for the in vitro exposure of human cells to environmental and complex gaseous mixtures: application to various types of atmosphere. ATLA 2002; 30: 433-441.

Federal Institute for Risk Assessment • Thielallee 88-92 • D-14195 Berlin • Tel. + 49 (0) 30 - 84 12 - 0 • Fax + 49 (0) 30 - 84 12 - 47 41 bfr@bfr.bund.de