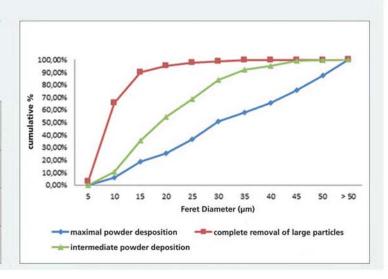


VITROCELL® Powder Chamber

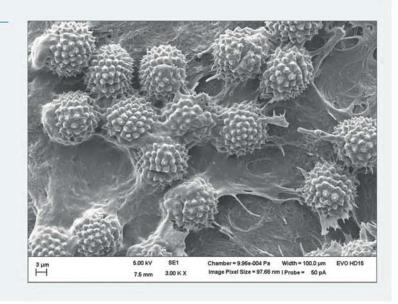
Katharina Knoth, Marius Hittinger, PharmBioTec GmbH, Science Park 1, 66123 Saarbrücken, Germany Tobias Krebs, VITROCELL Systems GmbH, 79183 Waldkirch, Germany

For Exposure to Smallest Quantities of Dry Powders


This novel system is specifically designed for dose-controlled and uniform deposition of dry powder aerosols on cells cultured at the air/liquid inferface. The dry powder can be applied from all commercially available inhalers or via direct dosing. For optimization of the process to various test-substances, the user is able to alter a series of parameters. A typical exposure experiment itself takes only 30-60 minutes.

Customer Example 1

We investigated different experimental setups to evaluate the influence on deposition characteristics of an Active Pharmaceutical Ingredient (API) loaded formulation with a broad size distribution. The following parameters were identified which led to different particle sizes and different deposited masses.


	Flow rate	Sedimen- tation time	Exposi- tion time	Tube length	Filling time	Mass [µg/cm²]
maximal powder deposition	30 L/min	0 s	30 min	30 cm	600 ms	~1.8
intermediate powder deposition	30 L/min	10 s	10 min	20 cm	600 ms	~1.2
complete removal of large particles	30 L/min	5 min	30 min	20 cm	1500 ms	~0.7

Customer Example 2

In a cooperation of Bayer Vital GmbH, PharmBioTec GmbH and Bock Project Management, the Powder Chamber was successfully applied to study pollen deposition on nasal in vitro model (MucilAir™). The SEM image shows pollen interacting with mucus-like structures after aerosolized pollen deposition on an air-liquid MucilAir™ cell culture system.

The publication entitled Combining MucilAir™ and Vitrocell® Powder Chamber for in vitro evaluation of nasal mucosa pollen protective ointments is currently in preparation. The team involved the following researchers and affiliations: Julia Metz ^{1, 2}, Katharina Knoth ¹, Henrik Groß ¹, Claus-Michael Lehr ^{1, 2, 3}, Carolin Stäbler ⁴, Udo Bock ⁵, Marius Hittinger ¹. Affiliations: ¹PharmBioTec GmbH, Saarbrücken, Germany, ²Saarland University, Saarbrücken Germany, ³Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), 66123 Saarbrücken, Germany, ⁴Bayer Vital GmbH, Leverkusen, Germany and ⁵Bock Project Management, Tawern, Germany.

