

Karlsruhe Institute of Technology

¹Institute for Technical Chemistry ²Institute of Toxicology and Genetics ³Vitrocell Systems GmbH, Germany ⁴Helmholtz Centre Munich, Germany ⁵University of Rostock, Germany

A lab scale measurement technique for the air-liquid interface exposure of human lung cell cultures towards particulate emissions from combustion processes

¹S. Mülhopt, ³M. Berger, ¹C. Schlager, ²M. Dilger, ²S. Diabaté, ³T. Krebs, ^{4,5}Ralf Zimmermann, ⁴Jeroen Buters, ⁴Sebastian Oeder, ²C. Weiss, ¹H.-R. Paur

Background

Numerical simulations by Kiesewetter et al. [1] show: also in 15 years the European limits for PM₁₀ immissions will not be complied. figure: predicted PM₁₀ concentrations in 2030 [1]

Karlsruhe Exposure System

The Karlsruhe Exposure System is a lab scale measurement system for the airliquid interface exposure of human lung cell cultures towards airborne nanoparticles under well defined conditions.

➔ New assessment methods for biological responses of immissions are required.

Scheme of a cell culture exposure at the air-liquid interface towards airborne nanoparticles led towards the surface by the aerosol inlet and on the sensor of a quartz crystal microbalance for online monitoring of dose.

complex particle collective with

Biological responses: LDH release for cytotoxicity assessment

Number size distributions of wood smoke aerosol, measured with SMPS (TSI3071) in the exposure system with a dilution factor of 10. Single measurements over time (left) and the mean ± standard deviation of all measurements (middle). The TEM image shows a typical soot agglomerate (right).

A survey of successively applied and analyzed aerosols, cell cultures, and biological effects

aerosols	industrial nanoparticles	titanium dioxide, silicon dioxide, silver, platinum	
	combustion aerosols	emissions from wood stoves, marine diesel engines, wood- fired boilers, pellet boilers, municipal waste incinerators	
cell cultures	human lung epithelial cells	A549, BEAS-2B, SK-MES-1	co-cultures from epithelial cells and macrophages and/or endothelial cells
	macrophages	THP-1, RAW264.7	
	human endothelial cells	HUVEC	
biological effects	markers for inflammatory processes	release of IL-8, IL-6, MCP-1, expression of ICAM-1	
	markers for cytotoxicity	release of LDH, reduction of AlamarBlue	
	markers for oxidative stress	expression of HMOX-1	
	markers for metabolism of foreign substances	expression of CYP1A1	

- Electrostatic deposition does not induce toxicity
- Higher particle dose of wood smoke aerosol leads to acute toxicity

Conclusion

- We developed a lab scale measurement system for the air-liquid interface exposure of human lung cell cultures towards airborne nanoparticles.
- Air-liquid interface exposure is the method of choice to investigate in-vitro the biological effects of ultrafine particle emissions.
- Emissions from biomass burners can cause cytotoxicity at elevated dose.
- Further endpoints as multi omics are

PM 2.5 Inlet

Humidifier

37 °C

under investigation within the Helmholtz Virtual Institute HICE

Acknowledgement

This work was supported by the KIT-Seed-Fonds and by the Helmholtz Association within the virtual institute HICE. Further Information: www.hice-vi.eu

The work is also part of the European projects Quality-Nano and NanoMILE.

References

- [1] Kiesewetter, G., et al. (2015) Modelling street level PM10 concentrations across Europe: source apportionment and possible futures. Atmos. Chem. Phys. 15(3): p. 1539-1553.
- [2] Mülhopt, S., et al. (2016) Toxicity testing of combustion aerosols at the air-liquid interface with a self-contained and easy-to-use exposure system. Journal of Aerosol Science 96: 18.
- [3] Oeder, S., et al. (2015) Particulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions. PLOS ONE, 2015. **10**(6): p. e0126536.
- [4] Sapcariu, S. C., et al. (2016). Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel. PloS one 11(6): e0157964.
- [5] Paur, H.-R., et al. (2011) In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung-A dialog between aerosol science and biology. Journal of Aerosol Science, 42: p. 668-692.

