In vitro model of repeated exposure to different contaminants of human respiratory cells

Charles PERSOZ, Christopher LELEU, Sophie ACHARD, Magali FASSEU, Jean MENOTTI, Pascale MENECEUR, Francis DEROUIN, Nathalie SETA

1- Laboratoire Santé Publique et Environnement, EA4064, Université Paris Descartes, Paris, France
2- Laboratoire de Parasitologie-Mycologie, EA 3520, Université Paris Diderot, Paris, France
3- Centre de Recherche Biomédicale Bichat-Beaujon, Inserm, U773, Paris, France

Purpose
Humans are permanently exposed to numerous pollutants of different types. The effects of the association between chemical and biological compounds on human respiratory health, and especially asthma, are still unclear. In order to clarify these effects, toxicological evidence is needed in addition to epidemiological observations. Our aim was to develop an in vitro model of exposure using two types of pollutants. The individual or combined in vitro effects of a chemical pollutant (formaldehyde-FA) and a biological contaminant (Aspergillus fumigatus-Asp), both known to be found in domestic environment and deleterious to respiratory health, were assessed in vitro on epithelial respiratory cells using a unique exposure device and stringent conditions of exposure.

Methods
Human alveolar epithelial cells (A549) were sequentially exposed at the air-liquid interface in a Vitrocell exposure module, firstly to environmental level of FA (50µg/m³) (or Air for Control) during 30 min, and 14h later to viable spores of Asp (7.10⁶ spores/m³, sampled at the inflow level) (or Air for Control) during 30 min. Controls comprised sequential exposures to each agent alone or to ambient filtered air. After 10h post-incubation, cellular viability (LDH assay) was assessed. Biomarkers of local inflammation, IL-8 and MCP-1 were assayed by ELISA in the medium removed from apical face of cells, and their mRNA expression was quantified by RT-qPCR.

Protocol of sequential exposure

Four experimental conditions were assessed:

- Air
- FA
- Air-Asp
- FA-Asp

Analysis of cytokine expression and cellular viability

Preliminary Results

Why did we chose 10h post-incubation after Asp exposure?

Because 10h is the necessary time to have an early hyphal stage for the growth of Asp. At 6h spores are just germinated and at 14h hyphae are too developed.

Results

Sequential exposure to air, FA or Asp did not impact cellular viability (E). Single exposure to FA or Asp and sequential exposure to FA then air did not induce significant changes of production or expression of inflammatory cytokines. However, sequential exposure to air then Asp tended to induce IL-8 production (A) and expression (B). When combined, FA followed by Asp exposure increased IL-8 production (A) and MCP-1 expression (D).

Conclusion

These results show that a combined exposure to different types of environmental pollutants can be modelled in vitro with concomitant assessment of effect on pulmonary cell viability and measurement of inflammatory cytokine response. Extending this experimental approach to other pollutant combinations is warranted to reach a first estimate of the complexity of interactions between pollutants in the pulmonary cell sensitization processes.

References: Persoz et al., Toxicol Lett, 2010 and 2011

After exposure of A549 cells, cytokines production, cytokines expression and cellular viability was assessed: A IL-8 production ; B IL-8 expression ; C MCP-1 production ; D MCP-1 expression ; E cellular viability