Untersuchungen zur genetischen Toxizität von Emissionen aus Laserdruckern in A549-Zellen im Vitrocell®-Transwell-Expositionssystem

Tao Tang, Richard Gminski und Volker Mersch-Sundermann

Aus dem
Institut für Umweltmedizin und Krankenhaushygiene
Department of Environmental Health Sciences
Medizinische Fakultät der Albert-Ludwigs-Universität Freiburg
Universitätsklinikum Freiburg
(Direktor: Univ.-Prof. Dr. med. habil. Volker H. Mersch-Sundermann)

20.07.2010
Inhaltsverzeichnis

1 FORMELZEICHEN .. 4
2 ABKÜRZUNGEN ... 5
3 DEFINITIONEN ... 8
4 ZUSAMMENFASSUNG .. 10
5 EINLEITUNG UND PROBLEMSTELLUNG .. 13
 5.1 Druck- und Kopiervorgang .. 13
 5.2 Emissionen von Laserdruckern und Kopierern ... 13
 5.3 Gesundheitliche Aspekte .. 15
 5.4 Ziel der Untersuchungen .. 16
6 EMISSIONSPRÜFKAMMER .. 17
 6.1 Klimatisierung ... 17
 6.2 Technische Daten .. 17
 6.3 Messkammer .. 18
7 PHYSIKALISCHE UND CHEMISCHE MESSUNGEN .. 21
 7.1 Auswahl der Geräte und Untersuchungsablauf .. 21
 7.1.1 Auswahl der Drucker .. 21
 7.1.2 Untersuchungsablauf .. 21
 7.2 Ozon ... 23
 7.3 Gesamter organischer Kohlenstoff (TOC) ... 24
 7.4 Flüchtige organische Verbindungen (VOC) .. 24
 7.4.1 Gaschromatographie und Massenspektrometrie (GC/MS) ... 24
 7.4.2 Auswertung der VOC-Analyse .. 25
 7.5 Stäube .. 25
 7.5.1 Feinstaub PM10, PM2,5 und PM1 ... 25
 7.5.2 Feine- und ultrafeine Stäube .. 27
8 TOXIKOLOGISCHE UNTERSUCHUNGEN ... 28
 8.1 Zellkultur .. 28
 8.1.1 Materialien und Geräte für Zellkultur ... 28
 8.1.2 Zelllinie ... 29
 Passagieren ... 30
 8.2 Vitrocell®-Expositionsmodul ... 30
 8.3 WST-1-Assay .. 32
 8.3.1 Materialien und Geräte für WST-1 Assay .. 32
 8.3.2 Durchführung des WST-1-Assays .. 33
 8.4 Mikrokerntest (Kleinkerntest) .. 34
 8.4.1 Zytokinese-Block-Technik .. 35
1 Formelzeichen

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Größe</th>
<th>Einheitenzeichen</th>
<th>Basiseinheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Luftgeschwindigkeit</td>
<td>m s$^{-1}$</td>
<td>Meter pro Sekunde</td>
</tr>
<tr>
<td>F</td>
<td>Frequenz</td>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>H</td>
<td>Höhe</td>
<td>M</td>
<td>Meter</td>
</tr>
<tr>
<td>L</td>
<td>Länge</td>
<td>M</td>
<td>Meter</td>
</tr>
<tr>
<td>M</td>
<td>Masse</td>
<td>Kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>N</td>
<td>Luftaustauschrate</td>
<td>h$^{-1}$</td>
<td>Luftwechsel pro Stunde</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Luftfeuchtigkeit</td>
<td>% RH</td>
<td>% relative Luftfeuchte</td>
</tr>
<tr>
<td>T</td>
<td>Zeit</td>
<td>S</td>
<td>Sekunde</td>
</tr>
<tr>
<td>T</td>
<td>Temperatur</td>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>U</td>
<td>Spannung</td>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>V</td>
<td>Volumen</td>
<td>m3</td>
<td>Kubikmeter</td>
</tr>
</tbody>
</table>
2 Abkürzungen

° Grad
© registriertes Warenzeichen
μg Mikrogramm
μL Mikroliter
μm Mikrometer
A549 humane Lungenepithel-Zelllinie
BAM Bundesanstalt für Materialforschung und -prüfung
BfR Bundesinstitut für Risikobewertung
BG Bestimmungsgrenze
BNC Binukleare Zellen (engl. Binucleated Cells)
C Celsius
CBPI Cytochalasin Block Proliferations Index
(engl. Cytochalasin Block Proliferation Index)
CEE Internationale Kommission für Regeln zur Begutachtung
elektrotechnischer Erzeugnisse
(engl. Commission on Rules for the Approval of Electrical Equipment)
C\textsubscript{max} maximale Konzentration
CPC Kondensationspartikelzähler (engl. Condensation Particle Counter)
DAPI 4',6-Diamidino-2-phenylindol
DMEM standardisiertes Nährmedium für tierische Zellen
(engl. Dulbecco's Modified Eagle Medium)
DIN Deutsches Institut für Normung
DNA Desoxyribonukleinsäure
(engl.: deoxyribonucleic acid)
EMS Ethylmethansulfonat
EN Europäische Norm
et al. und andere (lat. et alii, et aliae, et alia)
FCS Fetales Kälberserum (engl. Fetal Calf Serum)
FI Fehlerstrom
GC/MS Gaschromatographie und Massenspektrometrie-Kopplung zum Nachweis von VOC
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Begriff (englische Übersetzung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Stunde (engl. hour)</td>
</tr>
<tr>
<td>HCl</td>
<td>Salzsäure</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure</td>
</tr>
<tr>
<td>in prep.</td>
<td>in Vorbereitung (engl.: in preparation)</td>
</tr>
<tr>
<td>ISO</td>
<td>Internationale Organisation für Normung (engl.: International Organization for Standardization)</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm (= 1/1000 Gramm)</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter (= 1/1000 Liter)</td>
</tr>
<tr>
<td>MN</td>
<td>Mikrokern (engl. Micronucleus)</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>Nicotinamidadenindinukleotid (oxidierte Form)</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamidadenindinukleotid (reduzierte Form)</td>
</tr>
<tr>
<td>NG</td>
<td>Nachweigrenze</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer (= 1 x 10⁻⁹ Meter = 1 Milliardstel Meter = 1/1.000.000.000 Meter)</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer (= 1 x 10⁻⁶ Meter = 1 Millionstel Meter = 1/1.000.000 Meter)</td>
</tr>
<tr>
<td>PBMC</td>
<td>mononukleäre weiße Zellen des peripheren Blutes (engl.: peripheral blood mononuclear cells)</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphatgepufferte Kochsalzlösung (engl.: Phosphate Buffered Saline)</td>
</tr>
<tr>
<td>Pen/Strep</td>
<td>Penicillin/Streptomycin</td>
</tr>
<tr>
<td>PM</td>
<td>Feinstaub (engl.: Particular Matter)</td>
</tr>
<tr>
<td>STR</td>
<td>Succinat Tetrazolium Reduktase</td>
</tr>
<tr>
<td>SVOC</td>
<td>schwerflüchtige organische Verbindungen (engl.: semivolatile organic compounds; siehe auch unter dem Kapitel Definitionen)</td>
</tr>
<tr>
<td>TetraNC</td>
<td>Tetranukleare Zellen (engl. Tetranucleated Cells)</td>
</tr>
<tr>
<td>TriNC</td>
<td>Trinukleare Zellen (engl. Trinucleated Cells)</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>TOC</td>
<td>Gesamter organischer Kohlenstoff</td>
</tr>
<tr>
<td>TVOC</td>
<td>Summe der flüchtigen organischen Verbindungen</td>
</tr>
<tr>
<td>TD</td>
<td>Thermal Desorber</td>
</tr>
<tr>
<td>VOC</td>
<td>Flüchtige organische Verbindungen</td>
</tr>
<tr>
<td>VVOC</td>
<td>leichtflüchtige organische Verbindungen</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>WST</td>
<td>Wasserlösliches Tetrazolium</td>
</tr>
</tbody>
</table>
3 Definitionen

Aerodynamischer Durchmesser

Gentoxizität

Gentoxizität ist eine reversible oder irreversible Schädigung des Erbguts (DNA) durch chemische Substanzen oder aufgrund physikalischer Einflüsse. Die hervorgerufenen Veränderungen an der DNA können mutagene, kanzerogene (krebsauslösend) oder teratogene (fruchtschädigend) Effekte zeigen.

Initial Burst

Der Begriff „Initial Burst“ beschreibt eine kurze Phase nach dem Druckbeginn eines Laserdruckers oder Kopiergerätes, in der eine starke und kurzzeitige Erhöhung der Emission ultrafeiner Partikel mittels CPC beobachtet werden kann.

In vitro

Als in vitro (lat. „im Glas“) bezeichnet man organische Vorgänge, die außerhalb eines lebenden Organismus stattfinden. In der Naturwissenschaft bezieht sich in vitro auf Experimente, die in einer kontrollierten künstlichen Umgebung außerhalb eines lebenden Organismus durchgeführt werden.

Normalklima

Standardklimabedingungen nach DIN/ISO 554 (23 °C ± 2 K, 50 % RH ± 5 % RH).

SVOC

Organische Substanzen, deren Siedepunkt zwischen 240 °C - 260 °C und 380 °C - 400°C liegt
Viabilität

Unter Zellviabilität (Zelllebensfähigkeit) versteht man die Gesamtaktivität einer Zellpopulation.

VOC

Flüchtige organische Verbindungen, deren Siedepunkt im Bereich von 50 °C - 100 °C bis 240 °C - 260°C liegt.

VVOC

Sehr flüchtige organische Verbindungen, deren Siedepunkt im Bereich < 0 °C bis (50 °C to 100 °C).

Zytotoxizität

Als Zytotoxizität wird die Fähigkeit von chemischen Substanzen bezeichnet, Zellen zu schädigen oder abzutöten. Ein Vitalitätsverlust der Zellen von ≥ 40% wird als zytotoxisch angesehen.
4 Zusammenfassung

Frühere Studien zu den biologischen Wirkungen von Tonerpartikeln, aber auch von komplexen Emissionen aus Laserdruckern und Kopierern während des Druckvorgangs warfen die Frage auf, ob bei Exposition gegenüber Bestandteilen von Tonern bzw. gegenüber den gerätebedingten Emissionen während des Druckvorgang genotoxische, d.h. mutagene bzw. DNA-schädigende Effekte zu erwarten sind, die als Ursache für eine kanzerogene Wirkung diskutiert werden müssen.

Ziel der durchgeführten Studie¹ war vor diesem Hintergrund zu untersuchen, ob die beim Betrieb von fünf ausgewählten und gebrauchten Laserdruckern freigesetzten Stoffe toxische Wirkungen in humanen Zellen besitzen.

Neben Temperatur, Luftfeuchte, Ozon-, TOC- und VOC/TVOC-Konzentrationen wurden Feinstaubkonzentrationen (PM10, PM2,5 und PM1,0) mittels Laserpartikelzähler (Fa. Grimm, Modell 1.108) sowie Partikel im Nanometerbereich (10 nm – 1000 nm) mittels Kondensationspartikelzähler (Fa. TSI Modell 3007) in der Kammeratmosphäre möglichst online erfasst.

Eine Spezifizierung der Partikel wurde in dieser Studie nicht vorgenommen, was für die Fragestellung toxischer Effekte primär auch eher bedeutungslos war.

Zur Ermittlung toxischer Effekte wurde in den A549-Zellkulturen die Zytotoxizität mittels WST-1-Assay (intakte Atmungskette, mitochondriale Integrität) sowie die Indukti-

on von Mikrokernen nach Cytokinese-Block als Indikator für genetische Toxizität (klastogene und aneugene Wirkungen) untersucht.

Die mittleren Ozonkonzentrationen in der Kammerluft erhöhten sich im Vergleich zum Stand-by-Betrieb während des Druckprozesses nur geringfügig (2 – 18 µg/m³).

Die untersuchten Laserdrucker emittierten je nach Druckprozess (S/W-Druck, Farbdruck, Papierart) zahlreiche verschiedene VOC in – bezogen auf die Einzelsubstanzen – niedrigen Konzentrationen von jeweils nur einigen µg/m³ in der Kammerluft mit TVOC-Konzentrationen, die im Maximum einige hundert µg/m³ (Drucker A und D) über der Reinluftkontrolle lagen.

Die PM10-Feinstaubkonzentrationen beim Druckbetrieb erreichten im Maximum 7,4 µg/m³; bezeichnend war allerdings, dass – wie bereits in der 2007 abgeschlossenen Büromaststudie (BfR, 2008) tendenziell gezeigt wurde – bei drei der untersuchten Drucker (C, D+E) während des Druckvorgangs eine Erhöhung der mittleren Zahl nanoskaliger Partikel (10-1000 nm; auch „initial burst“) um Faktoren von etwa 2,0x10⁴ (C), 1,6x10² (D) und 1,4x10³ (E) im Vergleich zum Mittelwert der Stand-by-Kontrolle beobachtet werden konnte.

Die Emissionen der Drucker D und E führten in A549-Zellen zu einer signifikant (p<0,001; Student’s t-Test) erhöhten Induktion von Mikrokernen als Zeichen genetischer Toxizität bei fehlender Zytotoxizität. Eine Reduktion der Zellviabilität um knapp 40% zeigte sich nur bei Drucker E und nur bei Einsatz von Recyclingpapier. Die Emissionen aus den beiden Druckern D und E induzierten eine Mikrokernfrequenz von 20,8 ± 3,0 (N=5) bzw. 24,8 ± 2,8 Mikrokernen (N=5-6) pro 1000 ausgezählten binukleären Zellen im Vergleich zur Reinluftkontrolle mit 6,8 ± 1,3 Mikrokernen (N=6). Bei einem der fünf untersuchten Drucker (D) konnte eine Mikrokerninduktion bereits nach halbstündiger Exposition und Druck von 100 Seiten der Standardvorlage gesehen werden.

Bei aller Vorsicht im Hinblick auf die Interpretation und die Limitierungen der durchgeführten in vitro-Studie, zeigten die Ergebnisse eindeutig, dass durch Exposition gegenüber den Emissionen von zwei der fünf untersuchten Laserdrucker prinzipiell und signifikant gentoxische Effekte in humanen Zielzellen induziert werden konnten, wobei aufgrund des kleinen Kammervolumens und der ebenfalls kleinen Zelloberflä-
che worst-case-Bedingungen widergespiegelt wurden. Welche Komponenten in den Emissionen für die Gentoxizität relevant waren, wurde nicht untersucht.

5 Einleitung und Problemstellung

5.1 Druck- und Kopiervorgang

5.2 Emissionen von Laserdruckern und Kopierern

Beim Betrieb photoelektrischer Druck- und Kopiergeräte sind im Wesentlichen Emissionen feiner und ultrafeiner Stäube, flüchtiger organischer Verbindungen (VOC, volatile organic compounds) und Ozon (O₃) zu berücksichtigen.

Bei Laserdruckern kann technisch bedingt O₃ freigesetzt werden. Die elektrische Aufladung der Bildtrommel erfolgt anhand von hohen bis sehr hohen elektrischen Feld-
stärken. Im Bereich hoher Feldstärken kann die Umgebungsluft ionisiert werden, wo-
bei der Luftsauerstoff in O\textsubscript{3} umgewandelt werden kann. Ozonemissionen waren in
der BAM-Studie (Jann und Wilke 2006) bei den meisten Tischgeräten nicht messbar; bei einigen Standgeräten wurden hingegen beachtliche Ozonemissionen gemessen, die mit spezifischen Emissionsraten (SER) bis zu 9 mg/h den GW-Wert2 von 2 mg/h deutlich überschritten.

Insgesamt waren die Feinstaubemissionen bei den meisten, bisher untersuchten Ge-
räten gering. Ergebnisse der BfR-Büroraumstudie (2008) zeigten aber, dass unter
Realbedingungen die Partikelfreisetzung, aber auch die von von flüchtigen organi-
schen Verbindungen (VOC) je nach Gerät sehr variabel ist.

Aus biomedizinischer Sicht interessant könnte die Emission ultrafeiner Partikel sein,
die von manchen Geräten aus so genannten „initial burst“ abgegeben werden. Wie
die BfR-Büroraumstudie zeigte, kann sich die Konzentration der ultrafeinen Partikel
in der Innenraumluft um ein Vielfaches erhöhen. Bei den ultrafeinen Partikeln handelt
es sich allerdings nur zwischen 1-10% um substanziale Emissionen, die mittels
TEM-Analysen dargestellt wurden. Die restlichen 90-99% der als ultrafeine Partikel
mittels Kondensationspartikelzähler (CPC) erfassbaren Partikel bestehen aus flüchti-
gen Verbindungen, die bei Hitzeeinwirkung verschwinden (Morawska et al. 2009).

Die genaue Zusammensetzung der Partikel ist derzeit Gegenstand verschiedener
Forschungsvorhaben am Wilhelm-Klauditz-Institut in Braunschweig (WKI) und der
BAM in Berlin (Uhde et al., 2006; Wensing et al., 2006, 2008; Schripp et al., 2008,
2009; Morawska et al., 2009; Fiedler et al., 2009).

In einer australischen Studie wurden 62 Laserdrucker unterschiedlicher Hersteller auf
ihre Feinstaubemission untersucht (He et al., 2007). Wie bereits aus der BfR-
Büroraumstudie erwartet, zeigte sich, dass die untersuchten Geräte Feinstaub im
unterschiedlichen Ausmaß freisetzten und als „non-emitter“, „low-emitter“ und „high-
emitter“ eingestuft werden konnten (He et al., 2007). Der Feinstaubausstoß erfolgte
oftmals unmittelbar nach dem Druckstart als „initial burst“.

2 Bei dem GW handelt es sich um einen Grenzwert für Ozonemissionen aus den Vergaberichtlinien
des Blauen Engels. Im Jahr 2003 wurden die Vergabegrundlagen des Blauen Engels für Kopierer
(RAL-UZ 62), Drucker (RAL-UZ 85) und Multifunktionsgeräte (RAL-UZ 114) zusammen mit einem
neuen Prüfverfahren veröffentlicht (BAM 2003, Rockstroh et al. 2003 und 2005). In den Vergabe-
grundlagen erfolgte eine Begrenzung der zulässigen Emissionsraten von 2 mg/h.
Wie viel Partikel bei der Benutzung photoelektrischer Druck- und Kopiergeräte freigesetzt werden, hängt offenbar auch vom Alter der Geräte, den eingesetzten Tönnern, der Betriebstemperatur, der Kopier- oder Druckgeschwindigkeit sowie weiterer Faktoren ab (Gminski und Mersch-Sundermann, 2006; Jann und Wilke, 2006).

5.3 Gesundheitliche Aspekte

Dabei zeigte sich, dass für Laserdruckeremissionen bisher ein zytotoxisches, mutagenses oder gentoxisches Potential weder in vitro noch in vivo (Tierversuche) untersucht wurde, obwohl es aus der Literatur Hinweise für solche Wirkungen gibt (Goud et al., 2001, 2004; Gadhia et al., 2005; Pott und Roller, 2005; Roller, 2008; Mersch-Sundermann et al., 2010).

5.4 Ziel der Untersuchungen

Abb.1: Prüfschrank mit eingestelltem Laserdrucker
6 Emissionsprüfkammer

Für die Untersuchungen der Geräteemissionen fanden in einem handelsüblichen Klimaprüf schrank des Typs PR-4ST, Firma ESPEC, Weilburg, Deutschland, statt.

6.1 Klimatisierung

Temperatur und relative Feuchte wurden durch die internen Regelsysteme des Prüf schranks konstant auf 21°C und 50% relativer Feuchte gehalten. Die Temperierung und Befeuchtung des Prüfraums erfolgte über die Luftströmung an der Prüfraum rückwand.

6.2 Technische Daten

Leistungsbereich:

- Temperaturbereich: -20 °C bis +100 °C
- Temperaturabweichung (zeitlich): ± 0,3 K
- Feuchtebereich: 20 % RH bis 98 % RH
- Feuchteabweichung (zeitlich): ± 2,5 % RH

Abmessungen

- Prüfraumvolumen: 1000 L
- Abmessungen (B x H x L):
 - Prüfraum: 1000 mm x 1000 mm x 800 mm
 - Gehäuse: 1410 mm x 1840 mm x 1173 mm
 - Außenmaße: 1410 mm x 1970 mm x 1195 mm

Sonstige Daten

- Prüfraum, Gehäuse, Tür: komplett in Edelstahl
- Beobachtungsfenster: 450 mm x 315 mm
- Elektroanschluss: 400 V 3/N 50 Hz; Stecker: CEE 32 A
- Maximale Stromaufnahme: 20,5 A
- Edelstahldeckel für Messkabeldurchführung sowie für den Anschluss an das Vitrocell®-Zellkultursystem (Durchmesser: 100 mm)
- Frischluftanschluss für Luftwechsel (regelbar über Flow-Meter)
- Datenlogger EBRO® Typ EBI-2TH-612
6.3 Messkammer

Feuchtefühler

Reinluftversorgung

Abluft

Um eine Exposition der Mitarbeiter während der Prüfung von Emissionen in dem Prüfschrank zu verhindern, wird die gesamte Abluft der Emissionsprüfka mmer dem Abluftsyste m des Labor zugeführt.

Reinwasserversorgung

Die Befüllung der Wassertanks des Klimaprüfschanks erfolgte mit Reinwasser, welches dem Labor-Wasseraufbereitungssystem (Elix®, MILLIPORE, USA) entnommen wurde.

Luftdurchmischung

Luftaustauschrate

Über den Flow Meter und Druckminderer zur Regelung der Zuluftmenge wird die erforderliche Luftaustauschrate eingestellt. Die Luftaustauschrate soll einen Luftwechsel pro Stunde betragen (DIN prEN 13419-1, 2002; EN ISO 16000-9, 2006). Die Ermittlung der Luftaustauschrate erfolgt nach dem Abklingverfahren (EN ISO 12569, 2000; VDI 4300, 2001) mit Kohlenstoffdioxid als Indikatorgas. Der erwartete Volu- menstrom (Q) für eine Luftwechselrate von einem Luftwechsel pro Stunde (n = 1 h⁻¹) in der 1 m³ - Prüfkammer (V = 1 m³) wurde durch Messungen mit einem Mass Flow Meter (GFC 37 der Firma ANALYT, Müllheim Deutschland) kontinuierlich kontrolliert.
Luftdichtheit

Die Emissionsprüfkammer muss luftdicht sein, um einen unkontrollierten Luftausstausch mit der Außenluft zu vermeiden (DIN prEN 13419-1, 2002; EN ISO 16000-9, 2006). Die Emissionsprüfkammer wird dann als ausreichend luftdicht angesehen, wenn die Luftundichtigkeit weniger als 5 % der Durchflussrate der Zuluft beträgt (EN ISO 16000-9, 2006), was einer Luftaustauschrate von 0,05 h⁻¹ entspricht.

Die Prüfung der Luftdichtigkeit erfolgt über die Bestimmung der Luftaustauschrate auf Grundlage des bereits erläuterten Abklingverfahrens (EN ISO 12569, 2000; VDI 4300, 2001) mit Kohlenstoffdioxid als Indikatorgas. Bei einer Luftaustauschrate von 0,027 h⁻¹ über 48 h ist die Emissionsprüfkammer als ausreichend luftdicht zu bewerten.

Luftströmungsgeschwindigkeit

Für die standardisierten Emissionsmessung muss die Luftgeschwindigkeit nahe der Oberfläche des Prüfobjekts (Laserdrucker) im Bereich von 0,1 ms⁻¹ bis 0,3 ms⁻¹ liegen. In der Emissionsprüfkammer muss die Luftgeschwindigkeit ferner mindestens an einer Stelle gemessen werden, die sich oberhalb des Mittelpunktes des Prüfobjekts in einem Abstand von 10 mm von der exponierten Oberfläche des Prüfstückes befindet. In Abhängigkeit von der jeweiligen Größe des Prüfobjekts müssen weitere Messpunkte an ebenfalls repräsentativen Stellen ausgewählt werden (DIN prEN 13419-1, 2002; EN ISO 16000-9, 2006).

Auch, wenn für die folgenden Untersuchungen keine vergleichbare Standardisierung gesetzt werden muss, wurde die Luftgeschwindigkeit über dem Prüfobjekt in der Emissionsprüfkammer mittels eines Thermo-Anemometers 405-V1 der Firma TESTO jeweils zu Beginn und am Ende der Emissionsprüfung geprüft.

Aufzeichnung der Prüfbedingungen

Um sicherzustellen, dass die Emissionsprüfung unter festgelegten Bedingungen durchgeführt wird, müssen Temperatur und relative Feuchte unabhängig vom Regel- system für Temperatur und Feuchte kontinuierlich überwacht und mit folgender Genauigkeit aufgezeichnet werden (EN ISO 16000-9, 2006):

- Temperatur ± 1 K
- Relative Luftfeuchte ± 3 % RH

7 Physikalische und chemische Messungen

7.1 Auswahl der Geräte und Untersuchungsablauf

7.1.1 Auswahl der Drucker

Die Auswahl der Drucker erfolgte nach der Anzahl ihrer Nennung in Zusammenhang mit gesundheitlichen Problemen ihrer Nutzer und der Verfügbarkeit der Geräte (Stelling, 2006). Sie stellt keine Marktübersicht dar! Es handelt sich durchgängig um gebrauchte Drucker.

Der Seitendurchsatz wurde während der Versuche ermittelt. Alle Drucker mit Ausnahme des Druckers E sind Laserdrucker für Schwarz-Weiß-Druck.

Da die jetzigen Untersuchungen als Pilotstudie zu sehen sind, wurden die Drucker mit den Buchstaben A-E kodiert.

7.1.2 Untersuchungsablauf

Damit sich über Nacht in der Prüfkammer eine hinreichend kleine Partikelanzahlkonzentration einstellte, wurden die Drucker jeweils am Vortag in die Prüfkammer gestellt und komplett angeschlossen. Für die Versuche konnten sie zum Anschalten
und Übermitteln der Druckbefehle extern angesteuert werden, ohne die Kammer zu
öffnen. Diese Vorgehensweise war erforderlich, weil die Messmethode der Partikel-
zählung sehr empfindlich auf Störeinflüsse reagiert und nur so die Partikelemissionen
der Drucker eindeutig zu erfassen waren. Als Papiersorte kam Inapa Tecno, White
Paper, DIN A4, 75 g/m², Lissabon, Portugal, zum Einsatz. Zur Messung der Emissio-
en wurden je nach Druckergeschwindigkeit in 5-10 Minuten etwa 50-200 Seiten ge-
druckt. Mit dem Drucker E wurden Farbdrucke vorgenommen. Als Druckvorlage dient-
e die gleiche Vorlage, die auch für die Prüfung beim Blauen Engel für Hardcopygeräte
(RAL-UZ 114) verwendet wird (Abb. 3). Die Dauer des Druckprozesses war deshalb
variabel.

Tab. 1 : Untersuchte Laserdrucker und verwendeter Toner

| Drucker (Druckertyp) | Herstellungs-
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jahr</td>
</tr>
<tr>
<td>A (SW-Laserdrucker)</td>
<td>1997</td>
</tr>
<tr>
<td></td>
<td>5 Seiten / min</td>
</tr>
<tr>
<td>B (SW-Laserdrucker)</td>
<td>1999</td>
</tr>
<tr>
<td></td>
<td>10 Seiten / min</td>
</tr>
<tr>
<td>C (SW-Laserdrucker)</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td>22 Seiten / min</td>
</tr>
<tr>
<td>D (SW-Laserdrucker)</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>10 Seiten / min</td>
</tr>
<tr>
<td>E (Farb-Laserdrucker)</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td>16 Seiten / min</td>
</tr>
</tbody>
</table>

Nach dem Druckbetrieb wurde das Abklingen der Feinstaub- bzw. Partikelzahl-
Konzentrationen in der Kammer weiter gemessen. Jeder Drucker wurde mindestens
zweimal nach diesem Studiendesign untersucht. In der 1 m³-Kammer betrug der Luft-
wechsel während der gesamten Untersuchung 1 h⁻¹.

Die Messung der TVOC-Emissionsraten wurde für Reinluft und für den Druckbetrieb
bestimmt. Die Bestimmung der VOC-, Ozon- und Staubemissionen erfolgte über den
Zeitraum von Druckbereitschaft über Druckbetrieb bis zum Ende des Druckprozesses
so wie der anschließenden, wiederum stand-by-Phase, um das Abklingverhalten zu
ermitteln.
Wegen der limitierten Fassungskapazität des Papierschachtes war es für die ein-stündige Exposition der Zellkulturen notwendig, die Kammer während der Exposition kurzzeitig öffnen, um Papier nachzulegen. Dies bedingte ein artifizielles Absenken der druckbedingten Emissionskonzentrationen, was letztlich zu einer Unterschätzung sowohl der chemisch-physikalische wie auch der biologischen Messungen führte.

Abb.3: Testseiten, Monodruck mit 5 % und Farbdruck mit 20 % Flächendeckung

7.2 Ozon

Die Messungen der Ozonkonzentration in der Emissionsprüfkammer wurde mit dem Chemolumineszenz-Ozon-Messegerät LUM Monitor (Messbereich 1 µg O₃ m⁻³ - 1 g O₃ m⁻³) der Firma ANSEROS durchgeführt.

Das Messprinzip des Ozongasanalysators beruht auf dem Chemoluminischenzeffekt, wobei eine Röhre als Farbstoffträger fungiert. Als Licht-Spannungswandler dient ein hochempfindlicher Photomultiplier, der zentrisch in dem Messrohr angeordnet ist.

7.3 Gesamter organischer Kohlenstoff (TOC)

7.4 Flüchtige organische Verbindungen (VOC)

7.4.1 Gaschromatographie und Massenspektrometrie (GC/MS)

Die Bestimmung der VOC-Emissionen der Laserdrucker erfolgte gemäß ISO 16000-6 (2004) durch Luftprobenahme auf Tenax TA mit anschließender Thermodesorption (Markes International Limited, UK, TD Autosampler – Series 2 Ultra; Desorptionstemperatur 280 °C) und GC/MS-Analytik (Agilent, GC 7890A / MSD 5975C; Säule: J&W, DB-5, 60 m, 0,25 mm Innendurchmesser, 0,25 µm Filmdicke). Pro Messpunkt wurde eine 2- und 4-Liter Probe genommen (Volumenstrom 50 bzw. 100 mL/min); die Probenahmezeit betrug jeweils 40 Minuten. Zur Kalibrierung wurden VOC-Standard-Substanzen mit einer Reinheit von mindestens 98% verwendet (Sigma-Aldrich, Taukirchen, Germany).

3 bei kürzerer Druckphase wurde die Nachlaufphase ebenfalls zur VOC-Sammlung genutzt
7.4.2 Auswertung der VOC-Analyse

Im Anschluss an die Datenaufnahme wurden die Rohdaten mithilfe der Software Chemstation (MSD Chemstation E.02.00.493) ausgewertet. Dies beinhaltet die Integration der Flächen der primären Targetionen und die Auflistung der Retentionszeiten und der Massenspektren. Die in den Chromatogrammen der Standards auftretenden Peaks wurden anhand der Referenzmassenspektren und Referenzretentionszeiten identifiziert. Die Retentionszeiten der Standards sowie die für die Integration relevanten Parameter wurden in der Methodendatei abgespeichert und gemeinsam mit den Referenzspektren für die Auswertung herangezogen. Nach der Identifizierung der Analyten erfolgte die Kalibrierung der Methode, wofür die bekannten Konzentrationen der Standards den Peak-Flächen der primären Targetionen zugeordnet wurden. Sobald die Kalibrierung abgeschlossen war, wurden die Chromatogramme der Blindproben, der täglichen Kontrollmessungen und der eigentlichen Proben ausgewertet. Für die Quantifizierung der einzelnen Verbindungen wurden die für die primären Targetionen in der Methode gespeicherten und zuvor bestimmten Response-Faktoren verwendet.

7.5 Stäube

7.5.1 Feinstaub PM10, PM2,5 und PM1

In der vorliegenden Untersuchung wurden sowohl die feinen (0,23-23 µm) wie auch die ultrafeinen (10-1000 nm) Partikelkonzentrationen in der Prüfkammer quantifiziert.
Gebräuchliche Definitionen im Arbeitsschutz (DIN EN 481, 1993)

PM10 Partikelfraktion, die einen grösenselektiven Luftinlass pas- siert, der für einen aerodynamischen Durchmesser von 10 μm eine Abscheidewirk samkeit von 50 % hat.

PM2,5 Entspricht der alveolengängigen Partikelfraktion, die einen grösenselektiven Luft einlass passiert, der für einen aerodynamischen Durchmesser von 2,5 μm eine Abscheidewirk samkeit von 50 % hat.

PM1,0 Entspricht der alveolengängigen Partikelfraktion, die einen grösenselektiven Luft einlass passiert, der für einen aerodynamischen Durchmesser von 1,0 μm eine Abscheidewirk samkeit von 50 % hat.

Ultrafeine Partikel Partikel mit einem Durchmesser < 100 nm (0,1 μm)

Nanopartikel Partikel mit einem Durchmesser < 50 nm (0,05 μm)

Staubmessgerät

über eine serielle Schnittstelle ausgelesen werden. Auf Basis der ermittelten Partikelanzahl ergibt sich die Partikelanzahlkonzentration. In Abhängigkeit der Zeit wird die größenabhängige Partikelkonzentration erfasst und als PM1, PM2.5 und PM10 angegeben. Als Ergebnis werden für die jeweiligen Fraktionen jeweils die Mittelwerte für die Druckbereitschaft und den Druckbetrieb angegeben.

7.5.2 Feine- und ultrafeine Stäube

Partikelzähler

Gesamtpartikelzahlen lassen sich gemäß dem Prinzip des Kondensationspartikelzählers (CPC Model 3007, TSI®) ermitteln. Da die als Messgröße dienende Lichtabsorption mit dem Partikeldurchmesser stark abnimmt, werden die Feinpartikel künstlich durch die Anlagerung von Propanol vergrößert.

Abb.4: Partikelzähler CPC 3007, TSI®

8 Toxikologische Untersuchungen

8.1 Zellkultur

8.1.1 Materialien und Geräte für Zellkultur

<table>
<thead>
<tr>
<th>Materialien und Geräte für Zellkultur</th>
<th>Hersteller/Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifuge 5804R</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>DMEM Low Glucose, 500 mL</td>
<td>PAA Laboratories GmbH, Linz, Austria</td>
</tr>
<tr>
<td>Erythrosin B</td>
<td>Sigma-Aldrich GmbH, München</td>
</tr>
<tr>
<td>FCS Gold, 500 mL</td>
<td>PAA Laboratories GmbH, Linz, Austria</td>
</tr>
<tr>
<td>HERAsafe</td>
<td>Thermo Scientific, Waltham, MA, USA</td>
</tr>
<tr>
<td>Inkubator</td>
<td>WTB Binder Labortechnik GmbH, Tuttlingen</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>Leica Microsystems, Wetzlar</td>
</tr>
<tr>
<td>Neubauer-Zählkammer</td>
<td>Brand GmbH & Co. KG, Wertheim</td>
</tr>
<tr>
<td>PBS Dulbecco's PBS, 500 mL</td>
<td>PAA Laboratories GmbH, Linz, Austria</td>
</tr>
<tr>
<td>Penicillin/Streptomycin, 100 mL</td>
<td>Invitrogen, Carlsbad, CA, USA</td>
</tr>
<tr>
<td>Pipetus® Akku</td>
<td>Hirschmann® Laborgeräte, Eberstadt</td>
</tr>
<tr>
<td>Reaktionsgefäße</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Stripetten® 10 mL</td>
<td>Corning Incorporated, Corning, NY, USA</td>
</tr>
<tr>
<td>Stripetten® 5 mL</td>
<td>Corning Incorporated, Corning, NY, USA</td>
</tr>
<tr>
<td>T75-Flaschen</td>
<td>Greiner Bio-One, Kremsmünster, Austria</td>
</tr>
<tr>
<td>Test Tubes Cellstar® 50 mL</td>
<td>Greiner Bio-One, Kremsmünster, Austria</td>
</tr>
<tr>
<td>Test Tubes Cellstar® 10 mL</td>
<td>Greiner Bio-One, Kremsmünster, Austria</td>
</tr>
<tr>
<td>Trypsin</td>
<td>Sigma-Aldrich GmbH, München</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>Memmert GmbH & Co. KG, Schwabach</td>
</tr>
</tbody>
</table>
8.1.2 Zelllinie

Humane Lungenkarzinomzelllinie (A549)

In der menschlichen Lunge werden verschiedene Cytochrom-P450 (CYP450) abhängige Enzyme exprimiert, die für die metabolische Aktivierung und Toxifizierung von promutagenen bzw. prokarzinogenen Substanzen wie beispielsweise der PAK verantwortlich sind. Für die humane A549 Adenokarzinomzelllinie wurde ebenfalls ein durch Arylhydrocarbon-Agonisten induzierbares CYP450 System nachgewiesen, vor allem CYP 1A1, 1B1, 2B6, 2C, 2E1, 3A5, and 3A7 (Hukkanen et al., 2000).

A549-Zellen werden seit vielen Jahren für toxikologische in vitro-Untersuchungen eingesetzt; daher wurde diese Zelllinie für die vorliegende Untersuchung verwendet. Die adhärent wachsenden Lungenepithelzellen wurden als Monolayer in Zellkulturflaschen kultiviert.

Abb.5: Mikroskopisches Bild der adhärent wachsenden Lungenkarzinom-Zelllinie A549 (Vergrößerung 400x)
Zusammensetzung des Mediums

Komplettmedium (DMEM + 10 % FCS + 0,5 % Pen/Strep):

- 500 mL DMEM (Low Glucose, with L-Glutamine)
- 50 mL FCS (beim Aliquotieren sterilfiltrieren)
- 2,5 mL Pen/Strep (Penicillin/Streptomycin)

Passagieren

8.2 Vitrocell®-Expositionsmodul

Das in unseren Untersuchungen eingesetzte Transwell-Expositionsmodul der Firma Vitrocell® (Abb.6) ermöglichte nun die Exposition von Zellen gegenüber luftgetragenen Stoffen wie Aerosolen und Gasen direkt an der Zelloberfläche gegenüber den in der Kammer eingestellten Stoffkonzentrationen.

Ebenso kann das Zellkulturmedium kontinuierlich erneuert werden. Dies war bei den Kurzzeitexpositionen in den durchgeführten Experimenten aber nicht notwendig.

Die Zellen wachsen auf einer semipermeablen Membran, auf der sie von der unteren Seite mit Nährstoffen (Zellkulturmedium) versorgt werden; auf der oberen Seite kann
eine standardisierte Exposition der Zellen gegenüber luftgetragenen Stoffen erfolgen (Abb.9).

Der Volumenstrom für die Exposition wird mit Massenflussreglern der Firma ANALYT, Müllheim, Deutschland reguliert. Der Gas-Flow-Controller arbeitet nach demselben Prinzip, wie der Mass-Flow-Meter. Der Massenflussregler verfügt zusätzlich über ein Proportionalventil, welches vom eingebauten Regler angesteuert wird. Der gemessene Fluss wird permanent mit dem vorgegebenen Sollwert verglichen. Abweichungen vom Sollwert werden durch das Ventil kompensiert, womit der gewünschte Fluss konstant gehalten wird. Der Arbeitsbereich beträgt 0,0 - 20,0 mL/min, mit einer Abweichung von 0,5 % im hohen Arbeitsbereich (Bedienungsanleitung GFC, ANALYT).

Für jedes Experiment wurden 10 mL Komplettmedium in das Vitrocell®-Modul eingefüllt.

Abb.6: Vitrocell®-Transwell-Expositionsmodul

Zur Exposition wurden die Transwells (z.B. Falcon® Cell Culture Inserts) in das Expositionsmodul eingesetzt, das Aufsatzmodul auf das Basismodul gesetzt und mit den Verschlußbügeln arretiert. Die Expositionsein- und -ausgänge wurden an eine geregelte Vakuumpumpe angeschlossen, so dass ein Volumenstrom von 5 mL/min
für die Exposition eingestellt werden konnte. Die Zuleitung zwischen Emissionskammer und Expositionsmodul wurde möglichst kurz gehalten (vgl. Abb. 9) und erfolgte über nicht-oxidierende TYGON R-3603-Schläuche, die für Labor- und Vakuumsysteme eingesetzt werden, mit einem Innendurchmesser von 3 mm (Außendurchmesser: 6 mm).

8.3 WST-1-Assay

8.3.1 Materialien und Geräte für WST-1 Assay

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Hersteller und Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Proliferation Reagent WST-1</td>
<td>Roche, Mannheim</td>
</tr>
<tr>
<td>Cellstar® Tissue Culture Plate</td>
<td>Greiner Bio-One, Kremsmünster, Austria</td>
</tr>
<tr>
<td>Vitrocell®- Expositionsmodul</td>
<td>Vitrocell, Waldkirch</td>
</tr>
<tr>
<td>DMEM ohne Phenolrot, 500 mL</td>
<td>Invitrogen, Carlsbad, CA, USA</td>
</tr>
<tr>
<td>HERAsafe</td>
<td>Thermo Scientific, Waltham, MA, USA</td>
</tr>
<tr>
<td>Infinite® M 200</td>
<td>Tecan Group Ltd., Männedorf, Switzerland</td>
</tr>
<tr>
<td>Inkubator</td>
<td>WTB Binder Labortechnik GmbH, Tuttlingen</td>
</tr>
<tr>
<td>Falcon® Multiwell™ 6 Well</td>
<td>BD Biosciences, Franklin Lakes, NJ, USA</td>
</tr>
<tr>
<td>HEPES</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Laborpumpe C10 P5</td>
<td>Haake, Karlsruhe</td>
</tr>
<tr>
<td>Mass Flow Controller</td>
<td>Analyt, Müllheim</td>
</tr>
<tr>
<td>Pipetus® Akku</td>
<td>Hirschmann® Laborgeräte, Eberstadt</td>
</tr>
<tr>
<td>Stripetten® 10 mL</td>
<td>Corning Incorporated, Corning, NY, USA</td>
</tr>
</tbody>
</table>
8.3.2 Durchführung des WST-1-Assays

Vorbereitung der Zellen

Für die Untersuchungen wurden 7.5×10^4 Zellen (A549 humane Lungenkarzinomzellen) in ThinCert™-Wells eingesät und mit 2 mL Komplettmedium aufgefüllt. Unter die ThinCert™-Wells wurden je 1 mL Komplettmedium in die Cellstar® Tissue Culture Plate pipettiert.

Nach 24 h Inkubation im Brutschrank bei 37 °C wurden die Zellen in der logarithmischen Wachstumsphase exponiert werden (Volumenfluss: 5 mL min⁻¹), wobei eine Kontrolle im Brutschrank verblieb.

Durchführung der Messung

Zur Exposition wurden die Zellen in den Transwells (ThinCert™-Wells) mit 500 µL Farb-Reaktionslösung (25 µL WST-1 und 475 µL farbloses DMEM-Medium) über-

Eine statistisch signifikante Erniedrigung der Zellviabilität nach Behandlung mit Laserdruckeremissionen im Vergleich zu reiner Luft wurde mit dem Student’s t-Test bei einem Signifikanzniveau von 95% geprüft (p<0,05).

8.4 Mikrokerntest (Kleinkerntest)

Der in vitro-Mikrokerntest ist ein seit Jahrzehnten etablierter Assay zur Messung chromosomaler DNA-Schäden (Miller et al., 1998; Stopper et al., 1997; Fenech et al., 2003, 2007); er ermöglicht eine schnelle und relativ einfache Analyse sowohl mutagener (gentoxischer) und zytotoxischer Effekte.

Erhöhte Mikrokernfrequenzen in präkanzerogenem Gewebe (Garewal et al., 1993; Herens et al., 1995; Rosin, 1993) und der Zusammenhang zwischen Mikrokernfrequenz und der Malignität von Zellen lassen darauf schließen, dass klastogene Effekte ein wichtiger Prozess in der Kanzerogenese sein könnten. Diese Annahme wird durch eine Studie von van Goethem et al. (1993) unterstützt. Dabei wurden Ratten-Hepatozyten in verschiedenen Stadien der Kanzerogenese von Leberzellkarzinomen isoliert und die jeweilige Mikrokernfrequenz bestimmt, die die genetischen Verände-
rungen während der Karzinogenese widerspiegelten. Bonassi et al. (2007) zeigten zudem, dass eine erhöhte Mikrokernfrequenz in PBMC (PBMC: peripheral blood mononuclear cells) ein prädiktiver Biomarker für das Tumorrisiko ist. Andere Studien analysierten die Korrelation zwischen Mikrokernfrequenzen und dem Risiko, an Lungenkrebs bzw. an einer Tumorerkrankung der Mundhöhle zu erkranken (Ramirez und Saldanha, 2002; El-Zein et al., 2006)

Zwei Mechanismen können bei der Induktion von Mikrokernen unterschieden werden:

- **Aneugene** (Spindelgifte)
 Aneugene Schädigung von Kinetochor und/oder Spindelapparat, was zum Verlust oder Gewinn ganzer Chromosomen (Aneuploidie) oder Chromosomensätze (Polyplloidie) führt. Im Mikrokern finden sich dann ganze Chromosomen.

- **Klastogene** (chromosomenbrechende Agenzien)
 Klastogene haben DNA-brechende Eigenschaften und führen zum Einschluss von Bruchstücken der Chromosomen oder Chromatiden in den Mikrokern.

Durch klastogene, chromosomenbrechende und damit DNA-fragmentierende Agenzien entstehen zumeist kleinere Mikrokerne als bei Aneugen (Spindelgifte), die als und Kintechor-schädigende Substanzen in den meisten Fällen größere Mikrokernen bilden.

8.4.1 Zytokinese-Block-Technik

Die Zytokinese-Block-Technik stellt eine Weiterentwicklung des Mikrokerntests dar. Mit der herkömmlichen Technik wurden alle entstandenen Mikrokerne erfasst, also auch solche, die nicht durch eine gezielte Exposition gegenüber Mutagenen, sondern durch ein vorheriges Ereignis hervorgerufen worden sind (Spontanmutationsrate). Eine Differenzierung der Mikrokerne bezüglich ihrer Entstehungursache war deshalb nicht möglich. Mit der von Fenech und Morley entwickelten Zytokinese-Block-Technik ist es schließlich gelungen, lediglich jene Mikrokerne zu erfassen, die durch eine Exposition gegenüber einem Genotoxin induziert wurden (Fenech, 1996). Damit konnte eine deutlich verbesserte Empfindlichkeit und Zuverlässigkeit des Mikrokern-tests erreicht werden.
Die Zytokinese-Block-Technik basiert auf einer Modulation der Zellteilung. Im Anschluss an eine genotoxische Behandlung werden die Zellkulturen mit Cytochalasin-B versetzt, einer Substanz, die die Zellteilung während der Mitose hemmt, also wohl Zellteilung, aber nicht die Zellkernteilung beeinflusst.

Durch die Blockierung der Zellteilung kann in Cytochalasin-B behandelten Zellen lediglich eine Endomitose ablauen, aus der Zellen mit zwei Kernen resultieren; so genannte „binukleäre“ Zellen (BNC). Auf diese Weise können alle Zellen, die postexpositionell eine Mitose vollenden, als BNC sichtbar gemacht werden und nur die in dieser Phase entstandenen Mikrokerne in BNC zur Auswertung herangezogen werden.

Die Zytokinese-Block-Technik gewährleistet weiterhin Einblick in die mitotische Aktivität einer Zellkultur und erlaubt die Berechnung des CBPI (Cytochalasin Block Proliferation Index). Dieser lässt sich durch den Anteil der durch Endomitose entstandenen binukleären bzw. multinukleären Zellen an der Gesamtzellzahl ermitteln.

Abb.8: Beispiele für mehrkernige Zellen mit Mikrokernen

Kriterien zur Identifizierung von Mikrokernen

Im Rahmen des HUMN (Human Micronucleus) Projektes haben Fenech et al. (2003) Bestimmungskriterien für Mikrokerne nach der Doppelkernmethode festgelegt, um eine einheitliche und reproduzierbare Auswertung des Assay zu gewährleisten. Sie gehen dabei prinzipiell auf die von Countryman und Heddle (1976) definierten Kriterien zur Klassifikation von Mikrokernen im klassischen Mikrokerntest zurück:
Die Kriterien zur Erfassung von Mikrokernen sind ⁴:

- Der Durchmesser eines Mikrokerns beträgt maximal \(\frac{1}{3} \) des Zellkerns.
- Der Mikrokern ist nicht fragmentiert und hat eine runde oder ovale äußere Form.
- Mikrokerne müssen ohne Verbindung zum Zellkern im Zytoplasma vorliegen.
- Mikrokerne müssen in ihrer Farbintensität dem Zellkern gleichen oder heller sein.
- Lage im gemeinsamen Zytoplasma des Doppelkerns.

8.4.2 Materialien und Geräte für Mikrokerntest

<table>
<thead>
<tr>
<th>Materialien und Geräte</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitrocell®- Expositionsmodul</td>
<td>Vitrocell, Waldkirch</td>
</tr>
<tr>
<td>Cytochalasin-B</td>
<td>Sigma-Aldrich GmbH, München</td>
</tr>
<tr>
<td>DAPI</td>
<td>Sigma-Aldrich GmbH, München</td>
</tr>
<tr>
<td>Deckgläschen</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>HERAsafe</td>
<td>Thermo Scientific, Waltham, MA, USA</td>
</tr>
<tr>
<td>Inkubator</td>
<td>WTB Binder Labortechnik GmbH, Tuttlingen</td>
</tr>
<tr>
<td>Falcon® Cell Culture Insert</td>
<td>BD Biosciences, Franklin Lakes, NJ, USA</td>
</tr>
<tr>
<td>Falcon® Multiwell™ 6 Well</td>
<td>BD Biosciences, Franklin Lakes, NJ, USA</td>
</tr>
<tr>
<td>Fluoreszenzmikroskop</td>
<td>Leica Microsystems, Wetzlar</td>
</tr>
<tr>
<td>HEPES</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Laborpumpe C10 P5</td>
<td>Haake, Karlsruhe</td>
</tr>
<tr>
<td>Mass Flow Controller</td>
<td>Analyt, Müllheim</td>
</tr>
<tr>
<td>Objektträger</td>
<td>Menzel-Gläser, Braunschweig</td>
</tr>
<tr>
<td>PBS Dulbecco's PBS, 500 mL</td>
<td>PAA Laboratories GmbH, Linz, Austria</td>
</tr>
<tr>
<td>Pipetus® Akku</td>
<td>Hirschmann® Laborgeräte, Eberstadt</td>
</tr>
<tr>
<td>Stripetten® 10 mL</td>
<td>Corning Incorporated, Corning, NY, USA</td>
</tr>
<tr>
<td>Stripetten® 5 mL</td>
<td>Corning Incorporated, Corning, NY, USA</td>
</tr>
<tr>
<td>Vakuumpumpe Laboport</td>
<td>KNF Lab, Trenton, New Jersey, USA</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>Memmert GmbH & Co. KG, Schwabach</td>
</tr>
</tbody>
</table>

⁴ Relevant ist das Ergebnis aus dem HUMN-Projekt, dass die Untersucher die Mikrokernauswertungen verblindet vornehmen müssen.
8.4.3 Durchführung des CB-Mikrokern-Assays

Vorbereitung der Zellen

Zur Durchführung des Mikrokerntestes wurden 6 x 10⁴ Zellen (A549 Lungenkarzinomzellen) in Falcon® Cell Culture Inserts eingesät und mit 2 mL Komplettmedium aufgefüllt. Unter die Inserts wurde in das Falcon® Multiwell™ je 1 mL Komplettmedium pipettiert. Nach 24 h Inkubation im Brutschrank bei 37 °C konnten die Zellen exponiert werden (5 mL min⁻¹).

Zellbehandlung nach Exposition

Nach Exposition wurden die Zellen zweimal mit 2 mL PBS gewaschen und dann 2 mL Komplettmedium in Falcon® Cell Culture Inserts vorgelegt. Anschließend wurden 4 µL Cytochalasin-B einpipettiert (5 mg in 3,33 mL DMSO) und 24 h inkubiert. Danach wurden die Zellen mit 2 mL PBS gewaschen, mit 2 mL und mit 1,5-%igem Tri-Natrium-Citrat (37 °C, 1,5 g in 100 mL destilliertem Wasser) hypoton behandelt (6 min bei 37 °C). Danach wurden die Zellen 5 min bei 4 °C mit 2 mL Fixierlösung (EtoH:HAc:Formaldehyd, 60:20:1) behandelt. Im Anschluss an das Abdampfen der Fixierlösung im Abzug konnten die Präparate bei 4 °C bis zur mikroskopischen Auswertung aufbewahrt werden.

Färben der Zellen

Zur Auswertung wurde die DNA der Zellen mit dem Fluoreszenzfarbstoff DAPI gefärbt (DAPI; 4′,6-Diamidino-2-phenylindol; siehe Anhang III: Zellfärbung). Zur Herstellung der Färbelösung wurde 1 mg DAPI in 200 µL DMSO gelöst und mit destilliertem Wasser auf 4 mL (entsprechend 0,25 mg/mL DAPI) aufgefüllt. Die Zellen wurden zunächst 5 min mit 5 M HCl und danach mit destilliertem Wasser gewaschen. Die Membran der Inserts wurde ausgeschnitten und auf einem Objektträger gebracht; dann wurden die Zellen mit 50 µL DAPI-Lösung überschichtet. Die Auswertung erfolgte unter einem Deckgläsen mittels Fluoreszenzmikroskop (DAPI-Filter) bei 100-facher Vergrößerung.
Auswertung

Zur Auswertung wurden ausschließlich Mikrokerne in binuklearen Zellen ausgezählt und pro Zelle quantifiziert (Monos; mononukleäre Zellen; BNC; binukleäre Zellen; TriNC; trinukleäre Zellen; tetraNC; tranukleäre Zellen). Die Berechnung des Cytochalasin Block Proliferation Index (CBPI) erfolgte über folgende Formel:

\[
CBPI = \frac{\text{Monos} + 2 \times \text{BNC} + 3 \times \text{TriNC} + 4 \times \text{TetraNC}}{\text{Gesamtzellzahl}}
\]

\[
\text{Gesamtzellzahl} = \text{Monos} + \text{BNC} + \text{TriNC} + \text{TetraNC}
\]

Für die Berechnung des CBPI wurden insgesamt 500 Zellen ausgezählt. Der CBPI sollte für eine verlässliche Aussage zur genetischen Toxizität der in Rede stehenden Exposition nicht kleiner als 1,5 sein, da ansonsten eine zytotoxische Schädigung der Zellen anzunehmen ist. Durch eine dann bestehende Störung des Zellstoffwechsels wird die Auswertung der Mutationsrate deutlich erschwert.

Für die Negativkontrolle (Reinluftkontrolle; Exposition mit Reinluft) sollte bei A549-Zellen ein CBPI von 1,7 - 1,9 und eine spontane Mikrokernrate von 4 - 6 Mikrokernen pro 1000 binukleären Zellen (MK/1.000 BNC) vorliegen; dies entspricht der in der Literatur dargestellten Spontanmutationsrate von A549-Zellen.

Zur Evaluation eines mutagenen Potenzials wurden die Mikrokerne in 1.000 binukleären Zellen (BNC) bestimmt. Eine statistisch signifikante Erhöhung der Mikrokernfrequenz nach Exposition wurde im Vergleich zur Reinluftkontrolle mit dem Student´s t-Test bei einem Signifikanzniveau von 95% geprüft (p<0,05).

Als Positivkontrolle diente Formaldehyd (100 mg/m³). Formaldehyd ist ein ubiquitär vorkommender Innenraumkontaminant. In Studien wurde das gentoxische Potenzial des hochreaktiven Formaldehyds bereits ausreichend nachgewiesen (Nielsen et al., 2010). Formaldehyd ist von der IARC (2006) als Humankarzinogen (Gruppe 1) klassifiziert. In A549-Zellen wurden von Speit et al. (2010) die gentoxischen Effekte durch Formaldehyd untersucht; es induzierte nach 1-h Exposition in einem Konzentrationsbereich von 200 µM signifikante DNA-Protein-Vernetzungen, detektiert im Comet assay (Speit et al., 2010).
In Abb. 9a ist der komplette Versuchsaufbau mit Emissionskammer, TOC- und Ozonmonitoren sowie angeschlossenen Zählern für feine und ultrafeine Partikel dargestellt. Auf dem Rollwagen befindet sich das Vitrocell®-Expositionsmodul.

9 Ergebnisse

Die im Rahmen der Experimente eingesetzten Laserdrucker wurden mit den Buchstaben A bis E bezeichnet.

9.1 Temperatur und Feuchte

Abb.10: Exemplarischer Temperatur (°C)- und Feuchteverlauf (% rel. Feuchte) für die Untersuchung des Laserdruckers A
9.2 Ozon

Während des Druckbetriebes zeigte sich bei allen untersuchten Laserdruckern A-D5 eine geringgradige Erhöhung der mittleren Ozonkonzentrationen während des Druckbetriebs im Vergleich mit der Druckbereitschaft (bei z.T. hoher Variabilität), die zwischen 0,002 und 0,018 mg/m3 lagen (Abb. 11).

\textbf{Abb.11: Ozonkonzentrationen der Laserdrucker A-D während Druckbereitschaft und Druckbetrieb. Dargestellt sind die MW ± SD von zwei unabhängigen Experimenten}

9.3 Gesamter organischer Kohlenstoffe (TOC)

Nur bei den Laserdruckern (Drucker B und E) war im Vergleich zur Druckbereitschaft eine leichte Erhöhung der TOC-Konzentrationen festzustellen (im Mittel fanden sich bei den Druckern Erhöhungen von 0,025 bis 2,28 mg/m3) bei monochromem Druck (Abb. 12). Mit Ausnahme von Drucker B und E fanden sich im Mittel bei allen Druckern praktisch keine signifikanten Erhöhungen im Druckbetrieb gegenüber der Stand-by-Kontrolle (Abb. 12).

5 Wegen eines nach den Messungen festgestellten Defektes des Ozon-Monitors konnten die Ozonkonzentrationen von Drucker E nicht ausgewertet werden
Abb. 12: TOC-Konzentrationen der Laserdrucker A-E während Druckbereitschaft und Druckbetrieb. Dargestellt sind die MW ± SD aus zwei unabhängigen Experimenten

9.4 Flüchtige organische Verbindungen (TVOC, VOC)

Bei den emittierten VOC handelt es sich u. a. um aliphatische und aromatische Kohlenwasserstoffe, Alkohole und Aldehyde/Ketone wie z. B. Hexanal. Es ist bekannt, dass Hexanal bei hohen Drucktemperaturen (ca. 180°C) aus dem Papier emittiert (Wilke et al., 2003). Daneben finden sich Siloxan-Oligomere, welche vermutlich ebenfalls beim Erhitzen der Laserdrucker-Fixiereinheit freigesetzt werden.
Abb. 13: TVOC-Konzentrationen der Laserdrucker A-E während des Druckbetriebs (N=2) im Vergleich zur Reinluftkontrolle (N=4). Dargestellt sind die MW ± SD aus zwei unabhängigen Experimenten.

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>NG (µg/m³)</th>
<th>BG (µg/m³)</th>
<th>Reine Luft (µg/m³)</th>
<th>A (µg/m³)</th>
<th>B (µg/m³)</th>
<th>C (µg/m³)</th>
<th>D (µg/m³)</th>
<th>E (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromatische Kohlenwasserstoffe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4,5-Tetramethylbenzol</td>
<td>2,55</td>
<td>6,98</td>
<td>ND</td>
<td>8,95</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzol</td>
<td>1,98</td>
<td>5,75</td>
<td>ND</td>
<td>5,34</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>4-Phenylcyclohexen</td>
<td>2,12</td>
<td>6,19</td>
<td>ND</td>
<td>7,16</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Benzol</td>
<td>1,63</td>
<td>5,12</td>
<td>ND</td>
<td>1,92</td>
<td>5,34</td>
<td>ND</td>
<td>1,92</td>
<td>1,92</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>3,36</td>
<td>8,67</td>
<td>3,80</td>
<td>11,98</td>
<td>ND</td>
<td>3,38</td>
<td>48,78</td>
<td>ND</td>
</tr>
<tr>
<td>m-Xylole</td>
<td>2,64</td>
<td>7,17</td>
<td>4,21</td>
<td>10,15</td>
<td>4,09</td>
<td>12,39</td>
<td>34,18</td>
<td>4,09</td>
</tr>
<tr>
<td>p-Xylole</td>
<td>3,57</td>
<td>9,15</td>
<td>ND</td>
<td>3,80</td>
<td>ND</td>
<td>36,21</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Benzol</td>
<td>3,72</td>
<td>9,45</td>
<td>ND</td>
<td>13,63</td>
<td>ND</td>
<td>5,34</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Toluol</td>
<td>2,75</td>
<td>7,79</td>
<td>ND</td>
<td>ND</td>
<td>18,40</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Σ Aromatische Kohlenwasserstoffe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12,98</td>
<td>43,61</td>
<td>34,00</td>
<td>51,13</td>
<td>193,58</td>
<td>21,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aliphatische Kohlenwasserstoffe n-C6 to n-C16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Octen</td>
<td>4,06</td>
<td>10,55</td>
<td>10,75</td>
<td>13,02</td>
<td>12,98</td>
<td>13,04</td>
<td>13,16</td>
<td>13,04</td>
</tr>
<tr>
<td>3-Methylhexan</td>
<td>1,94</td>
<td>5,87</td>
<td>2,02</td>
<td>ND</td>
<td>2,08</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>n-Dodecan</td>
<td>2,85</td>
<td>7,60</td>
<td>14,18</td>
<td>12,70</td>
<td>8,07</td>
<td>13,44</td>
<td>10,28</td>
<td>4,94</td>
</tr>
<tr>
<td>Hexan</td>
<td>1,60</td>
<td>5,05</td>
<td>ND</td>
<td>4,35</td>
<td>ND</td>
<td>4,15</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>n-Nonan</td>
<td>5,38</td>
<td>13,08</td>
<td>ND</td>
<td>ND</td>
<td>5,65</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>n-Octan</td>
<td>4,97</td>
<td>12,01</td>
<td>11,19</td>
<td>13,79</td>
<td>13,72</td>
<td>14,41</td>
<td>14,35</td>
<td>13,76</td>
</tr>
<tr>
<td>n-Pentadecan</td>
<td>1,68</td>
<td>4,96</td>
<td>ND</td>
<td>ND</td>
<td>1,96</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>n-Undecan</td>
<td>2,44</td>
<td>6,76</td>
<td>29,31</td>
<td>42,55</td>
<td>18,08</td>
<td>40,99</td>
<td>27,59</td>
<td>12,08</td>
</tr>
<tr>
<td>2,2,4,4,6,6-Pentamethylheptan</td>
<td>3,24</td>
<td>9,01</td>
<td>ND</td>
<td>3,49</td>
<td>5,21</td>
<td>3,61</td>
<td>5,92</td>
<td></td>
</tr>
<tr>
<td>Σ Aliphatische Kohlenwasserstoffe n-C6 to n-C16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67,46</td>
<td>86,42</td>
<td>56,35</td>
<td>96,77</td>
<td>73,15</td>
<td>49,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terpene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-pinene</td>
<td>3,81</td>
<td>9,66</td>
<td>ND</td>
<td>ND</td>
<td>17,95</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>β-pinene</td>
<td>5,14</td>
<td>13,62</td>
<td>ND</td>
<td>ND</td>
<td>18,79</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Linalool</td>
<td>2,43</td>
<td>6,75</td>
<td>ND</td>
<td>ND</td>
<td>3,36</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>3-Caren</td>
<td>4,96</td>
<td>12,65</td>
<td>ND</td>
<td>ND</td>
<td>9,08</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Σ Terpene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,36</td>
<td>43,82</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Alkohole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butanol</td>
<td>3,87</td>
<td>10,08</td>
<td>5,42</td>
<td>6,86</td>
<td>7,51</td>
<td>7,39</td>
<td>7,67</td>
<td>7,84</td>
</tr>
<tr>
<td>2-Ethyl-1-Hexanol</td>
<td>6,30</td>
<td>13,71</td>
<td>8,57</td>
<td>12,22</td>
<td>9,85</td>
<td>13,04</td>
<td>10,92</td>
<td>9,94</td>
</tr>
<tr>
<td>Phenol</td>
<td>5,07</td>
<td>11,36</td>
<td>ND</td>
<td>ND</td>
<td>5,89</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Σ Alkohole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13,99</td>
<td>19,08</td>
<td>17,35</td>
<td>26,32</td>
<td>18,59</td>
<td>17,78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycole/Glycol ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Methoxy-2-propanol</td>
<td>2,34</td>
<td>6,79</td>
<td>5,99</td>
<td>7,15</td>
<td>7,13</td>
<td>7,08</td>
<td>7,17</td>
<td>7,24</td>
</tr>
<tr>
<td>Butyl cellosolve</td>
<td>9,58</td>
<td>15,86</td>
<td>12,82</td>
<td>15,21</td>
<td>15,27</td>
<td>15,37</td>
<td>15,71</td>
<td>15,85</td>
</tr>
<tr>
<td>Diethylene glycol monobutyl ether</td>
<td>4,80</td>
<td>11,62</td>
<td>11,91</td>
<td>14,54</td>
<td>18,58</td>
<td>13,41</td>
<td>14,04</td>
<td>13,64</td>
</tr>
<tr>
<td>2-Ethoxyethanol</td>
<td>3,03</td>
<td>8,45</td>
<td>9,76</td>
<td>11,65</td>
<td>11,75</td>
<td>11,54</td>
<td>11,82</td>
<td>11,62</td>
</tr>
<tr>
<td>2-Methoxyethanol</td>
<td>2,34</td>
<td>6,79</td>
<td>5,92</td>
<td>7,09</td>
<td>7,07</td>
<td>7,10</td>
<td>7,07</td>
<td>7,09</td>
</tr>
<tr>
<td>Σ Glycole/Glycolether</td>
<td>46,39</td>
<td>55,65</td>
<td>59,80</td>
<td>54,50</td>
<td>55,82</td>
<td>55,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldehyde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzaldehyd</td>
<td>6,00</td>
<td>16,02</td>
<td>6,49</td>
<td>ND</td>
<td>7,34</td>
<td>13,06</td>
<td>26,54</td>
<td>7,34</td>
</tr>
<tr>
<td>Hexanal</td>
<td>2,45</td>
<td>7,26</td>
<td>6,17</td>
<td>70,23</td>
<td>19,84</td>
<td>76,20</td>
<td>11,39</td>
<td></td>
</tr>
<tr>
<td>1-Nonanal</td>
<td>1,85</td>
<td>5,54</td>
<td>4,00</td>
<td>8,54</td>
<td>5,00</td>
<td>9,3</td>
<td>8,61</td>
<td>5,12</td>
</tr>
<tr>
<td>Valeraldehyd</td>
<td>2,42</td>
<td>7,30</td>
<td>3,70</td>
<td>5,27</td>
<td>7,83</td>
<td>4,90</td>
<td>5,83</td>
<td></td>
</tr>
<tr>
<td>Σ Aldehyde</td>
<td>20,36</td>
<td>84,04</td>
<td>36,72</td>
<td>103,01</td>
<td>51,44</td>
<td>25,73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanon</td>
<td>4,95</td>
<td>12,76</td>
<td>7,27</td>
<td>127,83</td>
<td>41,12</td>
<td>21,87</td>
<td>26,54</td>
<td>56,99</td>
</tr>
<tr>
<td>4-Methyl-2-pentanon</td>
<td>2,95</td>
<td>7,67</td>
<td>4,08</td>
<td>3,43</td>
<td>ND</td>
<td>3,66</td>
<td>4,24</td>
<td>ND</td>
</tr>
<tr>
<td>Acetophenon</td>
<td>2,57</td>
<td>7,23</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>7,85</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Σ Ketone</td>
<td>11,35</td>
<td>131,26</td>
<td>41,12</td>
<td>25,53</td>
<td>22,70</td>
<td>56,99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halo-Kohlenwaserstoffe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropan</td>
<td>2,16</td>
<td>6,30</td>
<td>2,47</td>
<td>ND</td>
<td>ND</td>
<td>2,53</td>
<td>2,32</td>
<td>ND</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzol</td>
<td>2,31</td>
<td>6,49</td>
<td>ND</td>
<td>ND</td>
<td>3,97</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzol</td>
<td>3,09</td>
<td>8,12</td>
<td>ND</td>
<td>ND</td>
<td>3,72</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Σ Holocarbone</td>
<td>2,47</td>
<td>0,00</td>
<td>7,69</td>
<td>2,53</td>
<td>2,32</td>
<td>0,00</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Ester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butoxyethylacetat</td>
<td>2,79</td>
<td>7,50</td>
<td>ND</td>
<td>ND</td>
<td>9,90</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Ethylacetat</td>
<td>3,06</td>
<td>8,89</td>
<td>4,29</td>
<td>5,61</td>
<td>11,03</td>
<td>ND</td>
<td>ND</td>
<td>14,44</td>
</tr>
<tr>
<td>Σ Ester</td>
<td>4,29</td>
<td>5,61</td>
<td>20,13</td>
<td>0,00</td>
<td>0,00</td>
<td>14,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siloxane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexamethylcyclotrisiloxan</td>
<td>13,93</td>
<td>28,38</td>
<td>85,87</td>
<td>88,23</td>
<td>154,40</td>
<td>100,11</td>
<td>177,35</td>
<td>277,43</td>
</tr>
<tr>
<td>Octamethylcyclotetrasiloxan</td>
<td>6,83</td>
<td>13,61</td>
<td>12,98</td>
<td>12,51</td>
<td>15,43</td>
<td>12,73</td>
<td>19,41</td>
<td>22,25</td>
</tr>
<tr>
<td>Decamethylcyclopentasiloxan</td>
<td>1,99</td>
<td>5,88</td>
<td>4,60</td>
<td>3,53</td>
<td>ND</td>
<td>6,38</td>
<td>7,13</td>
<td>6,62</td>
</tr>
<tr>
<td>Σ Siloxane</td>
<td>103,45</td>
<td>104,27</td>
<td>169,83</td>
<td>119,22</td>
<td>203,89</td>
<td>305,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TVOC</td>
<td>426,48</td>
<td>760,22</td>
<td>440,19</td>
<td>546,20</td>
<td>756,39</td>
<td>559,99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TVOC Emission - TVOC</td>
<td>0</td>
<td>333,77</td>
<td>13,71</td>
<td>119,72</td>
<td>329,91</td>
<td>133,51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a: Differenz zwischen VOC-Konzentration der einzelnen Laserdruckeremissionen und der Reinluftmessung in µg/m³; NG: Nachweisgrenze; BG: Bestimmungsgrenze; ND: not detectable

9.5 Feinstaub (PM10, PM2,5 und PM1,0)

Die untersuchten Geräte A-E emittierten Feinstäube der Größenklassen PM10, PM2,5 und PM1; dies jedoch in sehr unterschiedlichem Maße; z.T. auch zwischen den beiden unabhängigen Experimenten des jeweiligen Druckers.

Die Partikelkonzentrationen in der Emissionskammer des jeweils ersten Experimentes der Drucker A-E sind in den Abb. 14a-e dargestellt; die Mittel- und Maximalwerte der 3 Partikelfraktionen während der Druckbereitschaft und der Druckphase wurden in den Abb. 15 und 16 dargestellt.

Tendenziall war insgesamt nur eine leichte Erhöhung der Partikelkonzentration um wenige µg/m³ zu erkennen. Eine Ausnahme stellte hier Drucker E dar, der zu Beginn
des ersten Experimentes im Druckbetrieb PM10-Spitzen zwischen 20 und 26 µg/m³ zeigte⁶ (vgl. Abb. 14e). Der Druck auf Recyclingpapier unterschied sich kaum zum Einsatz von herkömmlichem Papier (Daten nicht gezeigt).

Es muss jedoch beachtet werden, dass die Messzeiträume der Drucker aufgrund der unterschiedlichen Druckgeschwindigkeiten zum Teil deutlich variierten; zudem wurden Konzentrationsmaxima, wie beim Drucker E beobachtet, aus der Berechnung der Mittelwerte und Maxima herausgenommen, da bei Wiederholungen die Konzentrationsspitzen nicht zu beobachten waren. Daher muss es sich bei den PM10-Spitzen um Artefakte handeln, die eventuell durch Störungen im Druckverlauf hervorgerufen wurden. Zu beobachten war zudem, dass sich die Mittelwerte der Massenkonzentrationen der PM1-Fraktionen gegenüber denen der PM2,5- und PM10-Fraktionen während des Druckbetriebes deutlicher zu erhöhen schienen; dies allerdings in einem extrem niedrigen Bereich um 1 µg/m³, der im realen Innenraum in der normalen Hintergrundkonzentrationen komplett verschwinden würde.

⁶ Bei den PM10-Spitzenwerten handelte es sich voraussichtlich um ein Artefact aufgrund von Betriebsstörungen des Druckers, so dass die kurzen und hohen Spitzenwerte kritisch betrachtet werden müssen und für die Berechnungen in Abb.15 und 16 nicht berücksichtigt wurden.
Abb.14a-e: Partikelmassenkonzentration der PM10-, PM2,5- und PM1,0-Fraktionen für die Laserdruckers A-E
Abb. 15: Mittlere Feinstaubkonzentrationen der PM10-, PM2,5- und PM1,0-Fraktionen der untersuchten Laserdrucker A-E (N=2)

Abb. 16: Maximale Feinstaubkonzentrationen PM10, PM2,5 und PM1,0 für Druckbereitschaft und Druckbetrieb der untersuchten Laserdrucker A-E (N=2)
9.6 *Feine und ultrafeine Partikel (10-1000 nm)*

Die Partikelanzahlkonzentrationen für die mittels CPC gemessenen feinen und ultrafeinen Partikel (10 nm - 1.000 nm) des ersten Experiment sind in Abb.17a-e dargestellt; die Mediane Mittelwerte und Maxima wurden in Tab 3 berechnet. Eine Erhöhung der Konzentration der CPC-messbaren Partikel wurde während des Druckbetriebs bei drei der fünf Drucker festgestellt, wobei drei der fünf Drucker (C, D und E) eine Erhöhung der mittleren Partikelanzahlkonzentration in der Emissionskammer um einen Faktor von etwa 2,0x10^4 (C), 1,6x10^2 (D) und 1,4x10^3 (E) im Vergleich zur Stand-by-Kontrolle aufwiesen. Zwei dieser Drucker zeigten einen „Initial Burst“. Der Drucker C verursachte unmittelbar nach Druckbeginn ein steiler Anstieg der Partikelzahlen und nach Druckende ein relative schnelles Absinken (Abb. 21). Auffallend bei Drucker C war allerdings, dass im Vergleich zu den anderen „high emitters“ mit den hohen Konzentrationen an Partikeln gleichzeitig ein relativ hoher Ausstoß von Wasser erfolgte (gemessen mit dem TOC-Monitor, INNOVA 1412).
Partikelanzahlkonzentration des Druckers B

Zeit [min]

Partikelanzahl/cm³

0 5 10 15 20 25

Druckbetrieb
Druckbetrieb Stop
Nachlauf

Partikelanzahlkonzentration des Druckers C

Zeit [min]

Partikelanzahl/cm³

0 2 4 6 8 10 12 14 16

Druckbetrieb
Druckbetrieb Stop
Nachlauf

Druckbereitschaft
Druckbereitschaft

Seite 52
Abb.17a-e: Freisetzung von feinen und ultrafeinen Partikeln (CPC; 10-1000 nm) der Laserdruckers A-E
Die Reproduzierbarkeit der Partikelmessungen ist exemplarisch in Abb. 18 verdeutlicht; die anderen Wiederholungsmessungen lagen im gleichen Bereich der Abweichungen.

Tabelle 3: Mittlere, mediane und maximale Partikelanzahlkonzentration \([P/cm^3]\) an feinen- und ultrafeinen Partikeln (CPC; 10-1000 nm).

<table>
<thead>
<tr>
<th>Drucker</th>
<th>Mittelwert</th>
<th>Median</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Druckbereitschaft</td>
<td>Drucken</td>
<td>Druckbereitschaft</td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>17</td>
<td>276132</td>
<td>17</td>
</tr>
<tr>
<td>D</td>
<td>26</td>
<td>2213</td>
<td>25</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>19250</td>
<td>8</td>
</tr>
</tbody>
</table>

Abb. 18: Reproduzierbarkeit der Messungen am Beispiel des Druckers B (dargestellt sind drei Prüfkammermessungen mit Angabe der Einzelwerte)
9.7 Viabilität (WST-1-Assay)

Die Resultate der Viabilitätsmessungen der A549-Lungenzellen im WST-1-Assay nach einstündiger Exposition gegenüber Emissionen aus Laserdruckern sind exem-
plarisch für den Drucker E in Abb. 19 als Mittelwerte mit Standardabweichungen dar-
gestellt (N=3). Interessant an diesen Ergebnissen ist, dass die Viabilität der Zellen
bei Exposition gegenüber den druckerbedingten Emissionen beim Druck mit her-
kömmlichem Papier keine Reduktion zeigte. Eine signifikante Erniedrigung der Zell-
viabilität ergab sich jedoch beim Druck auf Recyclingpapier (Steinbeis, Classic White,
DIN A4, 80 g/m², Glückstadt, Germany; P<0,001; Student´s t-Test).

Die WST-1-Ergebnisse für die anderen untersuchten Drucker zeigten keine signifi-
kante Veränderung der Viabilität der Zellkulturen nach der Exposition (Abb. 20), son-
dern Viabilitätswerte im Bereich der Negativkontrolle (Reinluft). Dem hingegen redu-
zierte die einstündige Exposition gegenüber der Positivkontrolle Formaldehyd (100
mg/m³) die Zellviabilität signifikant auf 10,72 ± 4,42 (P<0,001, Student´s T-test).

Abb.19: Zellviabilität (WST-1 Assay) nach 1h-Exposition von A549-Lungenepi-
thezialzellen mit verschiedenen Emissionen des Laserdruckers E in einem Vitro-
cell®-Expositionsmodul
Abb. 20: Zellviabilität (WST-1-Assay) nach 1h-Exposition von A549-Lungenepithelzellen gegenüber Emissionen Laserdrucker A-E im Vitrocell®-Expositionsmodul

9.8 Mikrokerne (CB-Mikrokerntest)

In den Abb. 21 und 22 sowie in Tab. 4 sind die Mikrokernfrequenzen sowie die Cytochalasin Block Proliferation Indices (CBPI, Linie) dargestellt, die infolge der Expositionen gegenüber den Emissionen aus den 5 Laserdruckern A-E und der Positivkontrolle Formaldehyd (100 mg/m³) resultierten.

Es wird erkennbar, dass eine Exposition gegenüber den Emissionen aus den Laserdruckern A-E beim Betrieb mit nicht-recycelten Papier im Mikrokerntest keine zellproliferations-hemmenden Effekte verursachte. Für CBPI als Maß der Zytostase wurde bei allen Expositionen ein Wert zwischen 1,6 und 1,7 ermittelt, was bedeutet, dass sich 60-70 % der Zellen teilten.

Für die Emissionen aus den Druckern A, B und C wurde keine Erhöhung der Mikrokernfrequenzen im Vergleich zur reinen Luft nach 1-stündiger Exposition festgestellt. Dem hingegen wurde eine signifikante Induktion von Mikrokernen gegenüber den
Emissionen aus den Laserdruckern D und E beobachtet (p<0,05; Student´s t-Test).
Die Positivkontrolle Formaldehyd – eine bekannte, DNA-schädigende und leichtflüchtige Substanz (BfR, 2006) – induzierte eine Mikrokernfrequenz von 29,7 ± 3,5 (Abb.21; p<0,01; Student´s t-Test, N=3). Als weitere Positivkontrolle diente Ethylmethansulfonat (EMS). Die Zellen wurden für 1 h mit EMS in einer Konzentration von 43 mmol/L exponiert. Dies führte zu Mikrokernraten von 19 ± 2 Mikrokerne/1000 BNC (p<0,01; Student´s t-Test, N=3). Der CBPI betrug 1,62 ± 0,02.
Zusätzlich zu den einstündigen Experimenten wurden Untersuchungen der DNAschädigenden Effekte bei halbstündiger Exposition gegenüber Emissionen aus dem Laserdrucker D durchgeführt. In diesem Zeitraum wurden nur etwa 100 Blätter der Standardvorlage gedruckt).

Abb.21: Mikrokernfrequenzen (Balken) und Cytochalasin-Block-Proliferationsindex CBPI (Linie) in humanen Lungenzellen A549 nach 1h Exposition gegenüber Emissionen der 5 Laserdrucker im Vitrocell®-Expositionsmodul (N=2 unabhängige Experimente mit N=5-6 Zellkulturen; ** p < 0.01, *** p < 0.001; Student´s t-Test)
Wie in Abb. 22 gezeigt, konnte auch in diesen Experimenten eine erhöhte Mikrokernfrequenz im Vergleich zur Reinluftkontrolle festgestellt werden (p<0,05; Student´s t-Test) (Abb. 22. Die halbstündige Exposition führte nicht zu zellproliferationshemmenden Effekten. Für den CBPI wurde bei allen Expositionen ein Wert zwischen 1,6 und 1,7 ermittelt (Daten nicht gezeigt).

Abb.22: Mikrokernfrequenzen und Cytochalasin-Block-Proliferationsindex (CBPI, Linie) in A549-Zellen nach 0,5 h bzw. 1 h Exposition gegenüber Emissionen des Laserdruckers D im Vitrocell®-Expositionsmodul. (N = 3 Zellkulturen; * p < 0.05, ** p < 0.01; Student´s t-Test)

Zusammenfassend lässt sich sagen, dass für zwei der fünf untersuchten Druckern (in zwei unabhängigen Messreihen) signifikante Erhöhungen der Anzahl an induzierten Mikrokernen in humanen Lungenzellen im Vergleich zu reiner Luft als Kontrolle gefunden wurden und somit für diese Druckeremissionen eine gentoxische (mutagene) Wirkung nachgewiesen wurde.

Seite 58
In Tab. 4 sind alle, in der vorliegenden Studie ermittelten Ergebnisse tabellarisch zusammengefasst.

Tab. 4: Zusammenfassung der Emissionen von TVOC sowie Partikeln, der Zellviabilität und Mikrokernfrequenz nach 1-stündiger Exposition von A549-Zellen gegenüber den Emissionen aus den Laserdruckern A-E.

<table>
<thead>
<tr>
<th>Drucker</th>
<th>TVOC- und Partikelfreisetzung</th>
<th>Toxikologische Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cmax Partikel 10 nm -1000 nm</td>
<td>PM 10</td>
</tr>
<tr>
<td></td>
<td>[mg/m³]</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Reinluft</td>
<td>-</td>
<td>0,03</td>
</tr>
<tr>
<td>A</td>
<td>0,334</td>
<td>0,06</td>
</tr>
<tr>
<td>B</td>
<td>0,014</td>
<td>1,84</td>
</tr>
<tr>
<td>C</td>
<td>0,120</td>
<td>0,59</td>
</tr>
<tr>
<td>D</td>
<td>0,330</td>
<td>4,27</td>
</tr>
<tr>
<td>E</td>
<td>0,134</td>
<td>1,41</td>
</tr>
</tbody>
</table>

10 Diskussion

Mit der vorliegenden Studie sollte im Sinne von Pilotexperimenten die Frage beleuchtet werden, ob Emissionen aus photoelektrischen Druckmaschinen unter Einsatz validierter bzw. evaluiert verfahren messbare DNA-Schäden hervorrufen können.

Die beiden Kernstücke des Labormodells waren einerseits (a) eine Emissionsprüfkammer, mit der die geplanten Untersuchungen unter konstanten und standardisierten Bedingungen durchgeführt werden konnten und (b) ein Transwell-Zellkultur-
system (Vitrocell®), mittels dem – in einem ersten Schritt - immortale humane Lungenkarzinomzellen an der Zell/Luft-Oberfläche gegenüber den Emissionen beim Betrieb von Laserdruckern – generiert in der Emissionsprüfkammer - exponiert wurden. Die Effektivität der Exposition am Zell/Luft-Interface zur Ermittlung biologischer Wirkungen von Aerosolen oder Gasen wurde bereits in mehreren Studien belegt (Diabaté et al., 2002; Pariselli et al., 2006, 2009; Seagrave et al., 2007).

Bei der für unsere Studien eingesetzten A549-Zelllinie (ATCC-No. CCL-185) handelt es sich um eine maligne transformierte und dadurch immortalisierte, humane Alveolarepithelzelle vom Typ 2, die bereits 1972 aus einem humanen Lungenkarzinom isoliert wurde. A549-Zellen wurden in den letzten Jahrzehnten in zahlreichen toxikologischen Untersuchungen eingesetzt und bieten ein geeignetes \textit{in vitro}-Modell zum Nachweis zellbiologischer Effekte (Aufderheide and Mohr, 2000; Don Porto Carero et al., 2001; Kreja and Seidel 2002; Bakand et al., 2006; Schwerdtle and Hartwig, 2006; vgl. auch Kap. 8.1.2). In unseren Labors wurde der A549-basierte Mikrokerntest standardisiert und ist hier seit mehr als einem Jahrzehnt routinemäßig im Einsatz.

Deutlich differenziert werden muss allerdings zwischen (i) Expositionen gegenüber Tonerpartikeln und (ii) Expositionen gegenüber Emissionen aus tonerbasierten Geräten, zu denen die photoelektrischen Druck- und Kopiergeräte zählen. Während im ersten Fall auf das Produkt Tonerpulver bei direkter Exposition fokussiert wird, handelt es sich bei den Geräteemissionen nach heutigem Kenntnisstand um komplexe

Der Betrieb von Laserdruckern in der Emissionskammer führte zu einer sehr variablen Belastung der Luft mit flüchtigen organischen Verbindungen und Partikeln unterschiedlicher Größenordnung; wobei die gemessenen Konzentrationen der VOC wie auch der Partikel (0,23-23 µm) in der Prüfkammer – mit Ausnahme der ultrafeinen Partikel – generell sehr niedrig waren und eine biologische Wirkung nicht erklären können.

Die Ergebnisse der in vitro-Studien mit Tonerpulvern wurden primär als Hinweis auf eventuelle, adverse biologische Effekte auf die DNA-Integrität durch Emissionen aus Laserdruckern gewertet, wenn entweder ein direkter Kontakt zum Tonerpulver besteht (z.B. Inhalation von Tonerpulver beim Umgang mit Druckgeräten) oder in den Emissionen aus den Laserdruckern unveränderte oder veränderte Tonerpartikel in die Atemluft freigesetzt werden.

Nach neueren Untersuchungen (Mersch-Sundermann, 2007; Morawska et al., 2009) findet durch Laserdrucker allerdings – wenn überhaupt - nur eine sehr begrenzte Freisetzung von Tonerpartikeln statt. Daher muss für die nun festgestellten, mutagenen Effekte einzelner Laserdruckeremissionen ein Wirkungszusammenhang gesucht werden, der nicht mit der Exposition gegenüber Tonerpartikeln zu erklären ist, obwohl für diese das mutagene Potenzial bereits belegt wurde.
Ein Ansatz, die dem DNA-schädigenden Potenzial zugrunde liegenden Mechanismen zu beleuchten, ist die Tatsache, dass Ursache zellbiologisch nachweisbarer, gentoxischer Aktivität neben zahlreichen Chemikalien auch feine bzw. ultrafeine Partikel sein können. In verschiedenen Laborexperimenten wurde gezeigt, dass sehr feine Partikel durch die Zellmembranen in die Zellen eindringen und hier oxidativen Stress verursachen können, dem eine Schädigung zahlreicher makromolekularer Strukturen, darunter auch von DNA-Molekülen, folgen kann\(^7\).

Die Aufdeckung der Wirkmechanismen der induzierten DNA-Schäden wird Aufgabe weiterer Untersuchungen sein; derzeit sind die festgestellten DNA-Schäden rein deskriptiv und lassen keine Rückschlüsse auf einzelne Komponenten der Emissionen zu. Zwei der drei „high emitter“-Laserdrucker (D und E) zeigten eine deutliche Emission ultrafeiner Partikel und Mutagenität in A549-Zellen.

Somit ist die Frage, welche Komponenten der Druckeremissionen für die Mutagenität verantwortlich zeichneten, nach wie vor ungeklärt.

\(^7\) vgl. hierzu auch Proceedings of Nanotoxicology, Edinburgh, 02.-04.Juni 2010

Auch wenn eine Übertragung der jetzigen Resultate auf komplexere biologische Modelle (z.B. den Menschen) prinzipiell nicht möglich ist, sind Substanzen, die in vitro DNA-Schäden verursachen bis zum Nachweis des Gegenteils als Mutagene auch für den Menschen anzusehen. Zu berücksichtigen ist zudem, dass DNA-schädigende Substanzen, d.h. gentoxische Kanzerogene zumeist keinen unteren Wirkungsschwellenwert besitzen, so dass hinsichtlich einer Exposition das ALARA-Prinzip (As Low As Reasonably Achievable) gelten muss.

Was bedeutet nun Mutagenität im Allgemeinen? Mutagenität bezeichnet die Eigenschaft einer Einwirkung, das Erbgut zu verändern. Genetische Veränderungen im Erbgut implizieren jedoch nicht per se irreversible und/oder sichtbare Folgeschäden. So werden (i) zahlreiche DNA-Schäden vom zelleigenen ReparaturSYSTEM repariert; zudem (ii) enden mutierte Zellen nicht selten im programmierten Zelltod (Apoptose) oder (iii) sterben beispielsweise infolge einer geänderten Biochemie einfach ab (Nekrose). Ebenso werden (iv) Mutationen in so genannten stillen Bereichen der DNA nicht relevant, da die DNA für die Zellintegrität nicht benötigt wird. Allerdings kann eine Mutation auch den ersten Schritt (Initiation) in der malignen Transformati-

8 Allerdings können - sofern aufgeklärt – die Wirkmechanismen auch gegen eine Wirksamkeit beim Menschen sprechen. So könnten beispielweise differierende metabolische Prozesse, Rezeptorbindungen oder Signallingprozesse, die für die Mutagenität in A549-Zellen in vitro verantwortlich sind, gegen eine humane Wirksamkeit sprechen; ebenso wie das durch die Atemwege bedingte Nichterreichen der pulmonalen Zielzellen (z.B. durch Surfactantreaktionen). Da die den Mutationen zugrunde liegenden Ursachen und Mechanismen ungeklärt sind, kann hierzu auf der Basis der aktuellen Studie keine Aussage gemacht werden.
on einer Zelle darstellen, d.h. bei der Entstehung von bösartigen Tumoren, wenn sensible Bereiche der DNA, z.B. in Tumorsuppressorgenen, mutieren und hierdurch Zellzyklusregulationen der Zelle entfallen. Die Modelle der Mechanismen bei der gentoxischen Kanzerogenese sind hinreichend bekannt.

Ohne Frage sind weitere Studien notwendig, um (i) die wirksamen Komponenten in den Emissionen zu identifizieren, (ii) die Wirkmechanismen aufzudecken und (iii) die gefundenen, mutagenen Effekte in komplexeren biologischen Systemen (Tierversuche mit chronischer Exposition, humane Expositionsstudien) zu beleuchten, um ein ebventuelles Risiko für den Menschen quantifizieren zu können.
11 Literaturverzeichnis

Aufderheide M, Mohr U (2000) CULTEX - an alternative technique for cultivation and exposure of cells of the respiratory tract to airborne particulants at the air/liquid interphase. Exp Toxic Pathol. 52, 265-270

http://www.bfr.bund.de/cm/252/gesundheitsgefaehrdung_durch_toner.pdf

http://www.bfr.bund.de/cm/252/bfr_schliesst_arbeiten_zur_toner_problematik_ab.pdf

Seite 65

Mersch-Sundermann V (2007) Evaluierung möglicher Beziehungen zwischen Emissionen aus Büromaschinen, insbesondere aus Fotokopierern und Laserdruckern, und Ge-
sundheitsbeeinträchtigungen bzw. Gesundheitsschäden bei exponierten Büroangestellten. Pilotstudie-Abschlussbericht; Projektnummer: UFO-Plan FKZ 705 62 449

Morimoto Y et al. (2005) Negative effect of long-term in halation of toner on formation of 8-hydroxydeoxyguanosine in DNA in the lungs of rats in vivo. Inha. Toxicol 17, 749-753

Muhle H et al. (1991) Pulmonary response to toner upon chronic inhalation exposure in rats. Fund Appl Toxicol 17, 280-299

OECD Draft Proposal (2007) OECD GUIDELINE FOR THE TESTING OF CHEMICALS DRAFT PROPOSAL FOR A NEW GUIDELINE 487: In Vitro Mammalian Cell Micronucleus Test (MNvit)

Proceedings Nanotoxicology (2010), Edinburgh, 02.-04.07.2010

Roche Diagnostics (1999) Cell Proliferation Reagent WST-1 Anleitung, Roche Deutschland

Schiffmann D, DeBoni U (1991) Dislocation of chromatin elements in prophase induced by diethylstilbestrol: a novel mechanism by which micronuclei can arise Mutat Res, 246, 113-122

Schwerdtle T, Hartwig A (2006) Bioavailability and genotoxicity of soluble and particulate nickel compounds in cultured human lung cells. Materials Science and Engineering Technology 37, 521-525

TSI® (2004) Bedienungsanleitung Condensation Particle Counter Model 3007 TSI Incorporated, Shoreview, MN, USA

12 Abbildungsverzeichnis

Abb.1: Prüfschrank mit eingestelltem Laserdrucker (S.16)
Abb.2: Edelstahldeckel mit Rohren für die Messkabeldurchführung sowie für den Anschluss an das Vitrocell®-Zellkultursystem (S.18)
Abb.3: Testseiten, Monodruck mit 5 % und Farbdruck mit 20 % Flächendeckung (S.23)
Abb.4: Partikelzähler CPC 3007, TSI® (S.27)
Abb.5: Mikroskopisches Bild der adhären z wachsenden Lungenkarzinom-Zelllinie A549 (Vergrößerung 100x) (S.29)
Abb.6: Vitrocell®-Transwell-Expositionsmodul (S.31)
Abb.7: Umsetzung von WST, Roche Diagnostics (1999), modifiziert (S.33)
Abb.8: Beispiele für mehrkernige Zellen mit Mikrokernen (S.36)
Abb.9a: Versuchsaufbau mit Emissionskammer, Messgeräten und Vitrocell®-Transwell-Expositionsmodul (S.40)
Abb.10: Exemplarischer Temperatur (°C)- und Feuchteverlauf (% rel. Feuchte) für die Untersuchung des Laserdruckers A (S.41)
Abb.11: Ozonkonzentrationen der Laserdrucker A-D während Druckbereitschaft und Druckbetrieb. Dargestellt sind die MW ± SD von zwei unabhängigen Experimenten (S.42)
Abb.12: TOC-Konzentrationen der Laserdrucker A-E während Druckbereitschaft und Druckbetrieb. Dargestellt sind die MW ± SD von zwei unabhängigen Experimenten (S.43)
Abb.13: TVOC-Konzentrationen der Laserdrucker A-E während des Druckbetriebs (N=2) im Vergleich zur Reinluftkontrolle (N=4). Dargestellt sind die MW ± SD aus zwei unabhängigen Experimenten (S.44)
Abb.14a: Partikelmassenkonzentration der PM10-, PM2,5- und PM1,0-Fraktionen für des Laserdruckers A (S.47)

Abb.14b: Partikelmassenkonzentration der PM10-, PM2,5- und PM1,0-Fraktionen für des Laserdruckers B (S.48)

Abb.14c: Partikelmassenkonzentration der PM10-, PM2,5- und PM1,0-Fraktionen für des Laserdruckers C (S.48)

Abb.14d: Partikelmassenkonzentration der PM10-, PM2,5- und PM1,0-Fraktionen für des Laserdruckers D (S.49)

Abb.14e: Partikelmassenkonzentration der PM10-, PM2,5- und PM1,0-Fraktionen für des Laserdruckers E (S.49)

Abb.15: Mittlere Feinstaubkonzentrationen der PM10-, PM2,5- und PM1,0-Fraktionen der untersuchten Laserdrucker A-E (N=2) (S.50)

Abb.16: Maximale Feinstaubkonzentrationen PM10, PM2,5 und PM1,0 für Druckbereitschaft und Druckbetrieb der untersuchten Laserdrucker A-E. Mittelwerte aus zwei unabhängigen Experimenten (S.50)

Abb.17 a: Freisetzung von feinen und ultrafeinen Partikeln (CPC; 10-1000 nm) des Laserdruckers A (S.51)

Abb.17 b: Freisetzung von feinen und ultrafeinen Partikeln (CPC; 10-1000 nm) des Laserdruckers B (S.52)

Abb.17 c: Freisetzung von feinen und ultrafeinen Partikeln (CPC; 10-1000 nm) des Laserdruckers C (S.52)

Abb.17 d: Freisetzung von feinen und ultrafeinen Partikeln (CPC; 10-1000 nm) des Laserdruckers D (S.53)

Abb.17 e: Freisetzung von feinen und ultrafeinen Partikeln (CPC; 10-1000 nm) des Laserdruckers E (S.53)

Abb.18: Reproduzierbarkeit der Messungen am Beispiel des Druckers B (dargestellt sind drei Prüfkammermessungen mit Angabe der Einzelwerte) (S.54)

Abb.19: Zellviabilität (WST-1-Assay) nach 1h Exposition von A549-Lungenepithelzellen mit Emissionen des Laserdruckers E in einem Vitrocell®-Exposionsmodul (S.55)
Abb. 20: Zellviabilität (WST-1 Assay) nach 1h-Exposition von A549-Lungenepithelzellen gegenüber Emissionen der Laserdrucker A-E in Vitrocell®-Expositionsmodul (S.56)

Abb. 21: Mikrokernfrequenzen (Balken) und Cytochalasin-Block-Proliferationsindex CBPI (Linie) in humanen Lungenzellen A549 nach 1h Exposition gegenüber Emissionen der Laserdrucker A-E im Vitrocell®-Expositionsmodul (N=2 Experimente mit N=6 Zellkulturen; ** p < 0.01, *** p < 0.001; Student’s t-Test) (S.57)

Abb. 22: Mikrokerninduktion (Balken) und Cytochalasin-Block-Proliferations-index CBPI (Linie) in humanen Lungenzellen A549 nach 0,5 h bzw. 1 h Exposition gegenüber Emissionen des Laserdruckers D im Vitrocell®-Expositionsmodul. (N = 3 Zellkulturen; * p < 0.05, ** p < 0.01; Student’s t-Test) (S.58)
13 DANKSAGUNG

An dieser Stelle danken wir insbesondere der Viamedica Stiftung, Stiftung für eine gesunde Medizin, c/o Universitätsklinikum Freiburg, Breisacher Str. 115b, 79106 Freiburg und der Stiftung NanoControl – Internationale Stiftung, Immenhorstweg 100, D-22395 Hamburg, für die finanzielle Unterstützung.

Dank gebührt auch den Kollegen und Kolleginnen der Arbeitsgruppen Innenraumtoxikologie, Wohnmedizin und Molekulare Zellbiologie am Institut für Umweltmedizin und Krankenhaushygiene für ihre Unterstützung bei der Durchführung der Studie.