https://dx.doi.org/10.1021/acsnano.9b06860
Autors
Barosova H1, Maione AG2, Septiadi D1, Sharma M3, Haeni L1, Balog S1, O'Connell O2, Jackson GR2, Brown D4, Clippinger AJ3, Hayden P2,5, Petri-Fink A1,6, Stone V4, Rothen-Rutishauser B1.
1 Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
2 MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts 01721, United States.
3 PETA International Science Consortium Ltd., 8 All Saints Street, London N1 9RL, U.K.
4 Nano-Safety Research Group, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
5 BioSurfaces, Inc., 200 Homer Ave, Ashland, Massachusetts 01721, United States.
6 Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
This study characterizes a 3D in vitro alveolar tissue model comprised entirely of primary human cells to investigate its ability to predict pulmonary fibrosis. The study demonstrated that the EpiAlveolar model recapitulates relevant lung phenotypes and functions and is stable at VITROCELL Cloud with repeated exposures over 3 weeks.
Read more