Advanced in vitro exposure systems.

6. Mar. 2019

Carbendazim induces death in alveolar epithelial cells: A comparison between submerged and at the air-liquid interface cell culture.

DOI: 10.1016/j.tiv.2019.03.004

Tollstadius BF, da Silva ACG, Oliveira BC, Pedralli, Valadares MC.

Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.

In this work, the toxicity of the fungicide Carbendazim upon A549 alveolar cells was tested in comparison of monolayer and air-liquid interface cell system exposition. 


 

Read more

Comments (0) Number of views (140)

20. Feb. 2019

An in vitro coculture system for the detection of sensitization following aerosol exposure

DOI:10.14573/altex.1901241

Aline Chary1,2, Tommaso Serchi1, Elisa Moschini1, Jennifer Hennen2, Sébastien Cambier1, Janine Ezendam3, Brunhilde Blömeke2 and Arno C. Gutleb1
1Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Luxembourg; 
2Department of Environmental Toxicology, University Trier, Germany; 
3Centre for Health Protection, National Institute for Public Health and the Environment, The Netherlands

 

The Vitrocell® Cloud-6 system was used for the exposure of a coculture in vitro model to test compounds and vehicle controls. The 3D in vitro model was cultured at the air liquid interface consists of A549, EA.hy926, PMA-differentiated THP-1 and non-differentiated THP-1 cells, that were exposed to nebulized chemical respiratory sensitizers. The results are shown in flow cytometry measurements, cytokine release and gene expression.

 

Read more

Comments (0) Number of views (161)

26. Jul. 2018

Hybrid Lipid/Polymer Nanoparticles for Pulmonary Delivery of siRNA: Development and Fate Upon In Vitro Deposition on the Human Epithelial Airway Barrier

DOI: 10.1089/jamp.2017.1364

Ivana d’Angelo, PhD,1 Gabriella Costabile, PhD,2,3 Estelle Durantie, PhD,3 Paola Brocca, PhD,4 Valeria Rondelli, PhD,4 Annapina Russo, PhD,5 Giulia Russo, PhD,5 Agnese Miro, PharmD,2 Fabiana Quaglia, PhD,2 Alke Petri-Fink, PhD,3 Barbara Rothen-Rutishauser, PhD,3 and Francesca Ungaro, PhD2
1 Di.S.T.A.Bi.F., University of Campania ‘‘Luigi Vanvitelli,’’ Caserta, Italy.
2 Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Napoli, Italy.
3 Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
4 Applied Physics, Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy.
5 Laboratory of Biochemistry, Department of Pharmacy, University of Napoli Federico II, Napoli, Italy.

The Vitrocell Cloud was used for the exposure to aerosolized nanoparticles on a in vitro three-dimensional cell cluture, mimicking the human epithelial airway barrier comprising human bronchial epithelial cells,human blood monocyte-derived macrophages and dendritic cells to show the optimized siRNA transport and delivery at lung.

 

Read more

Comments (0) Number of views (26)

6. Jun. 2018

Distribution of polymer-coated gold nanoparticles in a 3D lung model and indication of apoptosis after repeated exposure

DOI: 10.2217/nnm-2017-0358

Savvina Chortarea1,2, Kleanthis Fytianos1,3,4, Laura Rodriguez-Lorenzo1, Alke Petri-Fink1,5 & Barbara Rothen-Rutishauser1
1BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
2Laboratory for Particles – Biology Interactions, Empa, Swiss Federal Laboratories for Materials, Science & Technology, St Gallen, Switzerland
3Department of Pulmonary Medicine, University of Bern, Bern, Switzerland
4Department of Clinical Research, University of Bern, Bern, Switzerland
5Department of Chemistry, University of Fribourg, Fribourg, Switzerland

The distribution and impact of aerosol-delivered functionalized AuNPs upon repeated administration were explored in a complex in vitro human lung epithelial tissue barrier model applying an air–liquid interface exposure approach. Nanoparticles were aerosolized using the Air-Liquid Interface system consisting of a nebulizer, an exposure and an incubation chamber connected to an air-flow system to provide optimum conditions for cell cultivation as well as a quartz crystal microbalance for online measurements of the NP dose deposited on the cells surface.

 

Read more

Comments (0) Number of views (324)

26. May. 2018

Acute effects of multi-walled carbon nanotubes on primary bronchial epithelial cells from COPD patients

DOI: 10.1080/17435390.2018.1472310

Beyeler S1,2, Chortarea S3,4, Rothen-Rutishauser B3, Petri-Fink A3, Wick P4, Tschanz SA5, von Garnier C1,2, Blank F1,2.

1 Department of BioMedical Research , University of Bern , Bern , Switzerland.
2 Department of Pulmonary Medicine , University Hospital of Bern , Bern , Switzerland.
3 BioNanomaterials, Adolphe Merkle Institute, University of Fribourg , Fribourg , Switzerland.
4 Laboratory for Particles-Biology Interactions, Empa Swiss Federal Laboratories for Material Science and Technology , St. Gallen , Switzerland.
5 Institute of Anatomy, University of Bern , Bern, Switzerland.

This paper shows the investigation of acute effects of occupational multi-walled carbon nanotubes exposure in primary epithelial lung cell cultures from potentially susceptible individuals with COPD.

Read more

Comments (0) Number of views (338)

11. Mar. 2018

VITROCELL® Cloud MAX

User Group Meeting 2018

Patrick Weindl1, Dr. Otmar Schmid2,

1VITROCELL Systems GmbH, 79183 Waldkirch, Germany
2Helmholtz Center Munich, Germany

The poster shows the design for smallest nebulization volumes and high deposition efficiency.

 

Read more

Comments (0) Number of views (250)

11. Mar. 2018

VITROCELL® Cloud SEQ

User Group Meeting 2018

Patrick Weindl, Oliver Wisser

VITROCELL Systems GmbH, 79183 Waldkirch, Germany

The VITROCELL® Cloud SEQ represents another evolution of the well-known Cloud systems. Keeping functional process parameters according to established devices like the VITROCELL® Cloud 6, 12 or 24 it is meant to enhance those devices even further. lt offers the possibility to sequentially expose rows of inserts to create dose-response curves while keeping the concentration of nebulized liquid at the same level and the cell-cultures under highly comparable conditions.


 

Read more

Comments (0) Number of views (181)

11. Mar. 2018

New Products at VITROCELL® User Group Meeting 2018

10 March 2018, Grand Hyatt San Antonio, Texas, USA

Following the VITROCELL® User Group Meeting 2017 in Baltimore, international scientists from Canada, Europe, Japan and USA reconvened in March 2018.

The informal event organized into short presentations and posters was followed by open discussions. It was an excellent opportunity to discuss the latest developments of VITROCELL®, to exchange your experience in working with the equipment and to meet other fellow researchers. The meeting took place prior to the international Society of Toxicology 57th Annual Meeting and ToxExpo, March 11 – 15, 2018, in San Antonio, USA - one of the largest international conferences related to toxicology.

Focus of the event was to share VITROCELL® activities since the last meeting, to exchange latest research results, to give an update on VITROCELL’s participation in major research programs as well as the presentation of new products for 2018.

Read more

Comments (0) Number of views (1047)

11. Mar. 2018

In vitro model for the prediction of respiratory sensitization of inhaled chemicals and protein allergens.

User Group Meeting 2018

Chary A.1,2, Serchi T.1, Cambier S.1, Moschini E.1, Contal S.1, Hennen J.2, Ezendam J.3, Blömeke B.2, Gutleb A.C.1
1 Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), Luxembourg.
2 Department of Environmental Toxicology, Trier University, Germany. 3Centre for Environmental Protection,National Institute for Public Health and the Environment (RIVM), The Netherlands.

Aim
- Adapt a 3D-coculture system previously developed by us (Klein et al. 2013) allowing the study of respiratory sensitization processes by including dendritic cells, which have a crucial role in sensitization
- Find markers for the assessment of the respiratory sensitizing potential of inhaled compounds by measuring the activation of DCs as well as the release of cytokines

 

Read more

Comments (0) Number of views (247)

11. Mar. 2018

Elucidating the impact of nanomaterials on genomic stability using high-throughput RT-qPCR and Alkaline Unwinding

User Group Meeting 2018

Matthias Hufnagel, Prof. Dr. Andrea Hartwig 

KIT - Karsruhe Institute of Technology

The poster shows the establisment of the use of a high-throughput RT-qPCR method and the quantitative detection of DNA strand breaks (Alkaline Unwinding) for cells exposed in the Air-Liquid Interface.

Read more

Comments (0) Number of views (167)
RSS
123
Back to Top