Advanced in vitro exposure systems.

3. Mar. 2021

Vitrocell® Leaktester

Must-have device for aerosol research – easy and efficient leak detection

Regular leak tests are mandatory in aerosol research. A leak caused by a forgotten connection or defective o-ring may have a significant influence on the aerosol exposure process. We recommend to carry out a leak test prior to the experiment and as part of cleaning or service routine.

VITROCELL Application Note

Read more

Comments (0) Number of views (217)

29. Dec. 2020

Air–Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects

https://doi.org/10.3390/nano11010065

 

Silvia Diabaté 1, Lucie Armand 2, Sivakumar Murugadoss 1 , Marco Dilger 1 , Susanne Fritsch-Decker 1, Christoph Schlager 3, David Béal 2, Marie-Edith Arnal 2, Mathilde Biola-Clier 2, Selina Ambrose 4, Sonja Mülhopt 3, Hanns-Rudolf Paur 3, Iseult Lynch 5 , Eugenia Valsami-Jones 5 , Marie Carriere 2, and Carsten Weiss 1

1 Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems–Biological Information Processing, 76344 Eggenstein-Leopoldshafen, Germany;
2 CEA, CNRS, IRIG, SyMMES, University Grenoble Alpes, 38054 Grenoble, France;
3 Karlsruhe Institute of Technology, Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany; 
4 Promethean Particles Ltd., Nottingham NG7 3EF, UK;
5 School of Geography Earth & Environmental Sciences (GEES), University of Birmingham (UoB), Edgbaston, Birmingham B15 2TT, UK;

 

KIT, together with VITROCELL SYSTEMS, set up a first Automated Exposure Station, which has been used for the assessment of nanoscale particle emissions from combustion sources such as ship diesel and wood burners. The system was further developed and offers a compact solution for toxicity testing of nanoparticle (NP) aerosols including sample conditioning, reproducible deposition, integrated dose determination by a quartz crystal microbalance (QCM), flow control, automated processes and data acquisition. The device was also tested with partner laboratories with the aim of potentially standardizing and achieving regulatory acceptance of the method.

 

Read more

Comments (0) Number of views (115)

19. Nov. 2020

Sub‑ohm vaping increases the levels of carbonyls, is cytotoxic, and alters gene expression in human bronchial epithelial cells exposed at the air–liquid interface

https://doi.org/10.1186/s12931-020-01571-1


Alexandra Noël, Ekhtear Hossain, Zakia Perveen, Hasan Zaman and Arthur L. Penn
Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA

 

Human bronchial epithelial cells (H292) were exposed to either butter-flavored or cinnamon-flavored e-cig aerosols at the ALI in a Vitrocell exposure system connected to a third-generation e-cig device.

 

Read more

Comments (0) Number of views (85)

2. Nov. 2020

Toxicological responses of BEAS-2B cells to repeated exposures to benzene, toluene, m-xylene, and mesitylene using air–liquid interface method

DOI: 10.1002/jat.4113


Clémence Méausoone1, Yann Landkocz1, Fabrice Cazier2, Marianne Seigneur1 Dominique Courcot1, Sylvain Billet1
1Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkirk, France
2Centre Commun de Mesures, Université du Littoral Côte d'Opale, Dunkirk, France

 

Benzene and toluene are solvents largely used in industries and emitted into the atmosphere, despite major and direct impacts on human health. This study shows the feasibility of observing mechanisms of toxic action during repeated exposure at ALI to doses close to human exposure. The second strength of this study was the measure of XME induction level with the initiation of several xenobiotic metabolism pathways over time. BEAS-2B cells were exposed to benzene, toluene, m-xylene, or mesitylene gaseous stream diluted in air using the Vitrocell ALI system.

 

Read more

Comments (0) Number of views (42)

2. Nov. 2020

Influence of the environmental relative humidity on the inflammatory response of skin model after exposure to various environmental pollutants

https://doi.org/10.1016/j.envres.2020.110350

Emeline Seurat a, Anthony Verdin b, Fabrice Cazier c, Dominique Courcot b, Richard Fitoussi d, Katell Vi´e d, Val´erie Desauziers e, Isabelle Momas a, Nathalie Seta a, Sophie Achard a
a Laboratoire de Sant´e Publique et Environnement, Hera “Health Environmental Risk Assessment”, Inserm UMR1153-CRESS (Centre de Recherche en Epid´emiologie et StatistiqueS), Universit´e de Paris, Facult´e de Pharmacie de Paris, 4, Avenue de L’Observatoire, 75006, Paris, France
b Unit´e de Chimie Environnementale et Interactions sur le Vivant UR4492, SFR Condorcet FR CNRS 3417, Maison de La Recherche en Environnement Industriel 2, Universit´e Du Littoral Cˆote D’Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
c Centre Commun de Mesures (CCM), Universit´e Du Littoral-Cˆote D’Opale, 145 Avenue Maurice Schumann, 5914, Dunkerque, France
d Laboratoires Clarins, 5 Rue Amp`ere, 95300, Pontoise, France
e IPREM, IMT Mines Ales, Universit´e de Pau et des Pays de L’Adour, E2S UPPA, CNRS, Pau, France

 

In the course of this study, they tested various pollutants with different chemical compositions, applying them to the apical side of Reconstructed Human Epidermis and being particularly interested in the effect relative humidity has on the reaction to pollutants. Investigating several cytokines and chemokines, they showed that IL-1α, IL-6, IL-8, and RANTES are the cytokines/chemokines almost systematically induced by most pollutants.

 

Read more

Comments (0) Number of views (96)

17. Oct. 2020

Cell‑specific toxicity of short‑term JUUL aerosol exposure to human bronchial epithelial cells and murine macrophages exposed at the air–liquid interface

https ://doi.org/10.1186/s1293 1-020-01539-1


Rakeysha Pinkston1,2, Hasan Zaman2, Ekhtear Hossain2, Arthur L. Penn2 and Alexandra Noël2
1 Department of Environmental Toxicology, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA 70813, USA. 
2 Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA.

 

There are thousands of flavors and flavoring combinations of e-liquids on the market with the potential to produce harmful effects when aerosolized through an ENDS device. While more research is needed regarding the potential toxicity associated with inhaling flavoring additives in combination with nicotine salt for future regulation of ENDS products, the present study provides laboratory-based evidence that should be considered regarding regulation of nicotine salt-based products.

 

Read more

Comments (0) Number of views (48)

8. Oct. 2020

Alternative air–liquid interface method for inhalation toxicity testing of a petroleum-derived substance

https://doi.org/10.1016/j.mex.2020.101088


Verstraelen Sandra a , Jacobs An a , Van Laer Jo a , Van Deun Masha b , Bertels Diane b , Hilda Witters a , Remy Sylvie a , c , Geerts Lieve a , Deferme Lize d , Frijns Evelien a
a VITO NV (Flemish Institute for Technological Research), Unit HEALTH, Mol, Belgium 
b VITO NV, Unit SCT (Separation and Conversion Technology), Mol, Belgium 
c Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium 
d ExxonMobil Petroleum and Chemical B.V., Machelen, Belgium

 

A549 cells were exposed to gasoline at the ALI by passive dosing, an approach that is already used in aquatic toxicity testing. This showes a clear dose-dependent biological response. This in vitro -based new approach methodology might be promising for inhalation toxicity testing of (semi-)volatile complex substances.

 

Read more

Comments (0) Number of views (42)

21. May. 2020

A novel TEM grid sampler for airborne particles to measure the cell culture surface dose

Sonja Mülhopt1, Christoph Schlager2, Markus Berger2, Sivakumar Murugadoss3, Peter H. Hoet3, Tobias Krebs2, Hanns-Rudolf paur1 & Dieter Stapf1
1Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, Eggenstein-Leopoldshafen, 76344, Germany. 
2Vitrocell Systems GmbH, Waldkirch, 79183, Germany. 
3KU Leuven, Environment and Health, Leuven, 3000, Belgium.

 

The surface dose and the spatial distribution on the membrane delivers important data for  measuring dose-response relationships in toxicity studies.  Image evaluation of transmission electron  microscopy (TEM) samples is a highly sensitive method for determination of deposition. This paper reports  the development and characterization of a novel holder for film coated TEM copper grids, which allows for  sampling under identical geometric and ambient conditions as in a cell culture chamber. 

 

Read more

Comments (0) Number of views (381)

13. May. 2020

An Air-liquid Interface Bronchial Epithelial Model for Realistic, Repeated Inhalation Exposure to Airborne Particles for Toxicity Testing

DOI:10.3791/61210 


Hedwig M. Braakhuis1, Ruiwen He1,2, Rob J. Vandebriel1, Eric R. Gremmer1, Edwin Zwart1, Jolanda P. Vermeulen1, Paul Fokkens1, John Boere1, Ilse Gosens1, Flemming R. Cassee1,2 
1National Institute for Public Health and the Environment (RIVM) 
2Institute for Risk Assessment Sciences (IRAS) 


This article provides a method for culturing and exposing the human bronchial epithelial cell line Calu-37 at the Air-liquid Interface that mimics realistic, repeated inhalation exposure conditions that can be used for toxicity testing. By applying a continuous airflow using the Automated Exposure System, the cell model can be exposed to a low concentration of particles over a longer time period, reflecting realistic exposure conditions. Characteristics of both the cell model and of  the exposure system are essential for achieving a realistic inhalation exposure model that can be used for repeated exposures. 

 

Read more

Comments (0) Number of views (220)

28. Feb. 2020

Lung Cell Exposure to Secondary Photochemical Aerosols Generated From OH Oxidation of Cyclic Siloxanes

DOI: 10.1016/j.chemosphere.2019.125126 

Autors

Benjamin M King 1 , Nathan J Janechek 1 , Nathan Bryngelson 1 , Andrea Adamcakova-Dodd 2 , Traci Lersch 3 , Kristin Bunker 3 , Gary Casuccio 3 , Peter S Thorne 2 , Charles O Stanier 4 , Jennifer Fiegel 5 

1Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA.
2Department of Occupational and Environmental Health, The University of Iowa, 145 N. Riverside Dr., Iowa City, IA, 52242, USA.
3RJ Lee Group, 350 Hochberg Road, Monroeville, PA, 15146, USA.
4Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA. Electronic address: charles-stanier@uiowa.edu.
5Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA. Electronic address: jennifer-fiegel@uiowa.edu.

 

A549 Lung cells were exposed to the secondary organosilicon aerosols using the Vitrocell 6 air-liquid interface system.

Read more

Comments (0) Number of views (139)
RSS
12345678
Back to Top