Advanced in vitro exposure systems.

21. May. 2020

A novel TEM grid sampler for airborne particles to measure the cell culture surface dose

Sonja Mülhopt1, Christoph Schlager2, Markus Berger2, Sivakumar Murugadoss3, Peter H. Hoet3, Tobias Krebs2, Hanns-Rudolf paur1 & Dieter Stapf1
1Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, Eggenstein-Leopoldshafen, 76344, Germany. 
2Vitrocell Systems GmbH, Waldkirch, 79183, Germany. 
3KU Leuven, Environment and Health, Leuven, 3000, Belgium.

 

The surface dose and the spatial distribution on the membrane delivers important data for  measuring dose-response relationships in toxicity studies.  Image evaluation of transmission electron  microscopy (TEM) samples is a highly sensitive method for determination of deposition. This paper reports  the development and characterization of a novel holder for film coated TEM copper grids, which allows for  sampling under identical geometric and ambient conditions as in a cell culture chamber. 

 

Read more

Comments (0) Number of views (241)

13. May. 2020

An Air-liquid Interface Bronchial Epithelial Model for Realistic, Repeated Inhalation Exposure to Airborne Particles for Toxicity Testing

DOI:10.3791/61210 


Hedwig M. Braakhuis1, Ruiwen He1,2, Rob J. Vandebriel1, Eric R. Gremmer1, Edwin Zwart1, Jolanda P. Vermeulen1, Paul Fokkens1, John Boere1, Ilse Gosens1, Flemming R. Cassee1,2 
1National Institute for Public Health and the Environment (RIVM) 
2Institute for Risk Assessment Sciences (IRAS) 


This article provides a method for culturing and exposing the human bronchial epithelial cell line Calu-37 at the Air-liquid Interface that mimics realistic, repeated inhalation exposure conditions that can be used for toxicity testing. By applying a continuous airflow using the Automated Exposure System, the cell model can be exposed to a low concentration of particles over a longer time period, reflecting realistic exposure conditions. Characteristics of both the cell model and of  the exposure system are essential for achieving a realistic inhalation exposure model that can be used for repeated exposures. 

 

Read more

Comments (0) Number of views (128)

28. Feb. 2020

Lung Cell Exposure to Secondary Photochemical Aerosols Generated From OH Oxidation of Cyclic Siloxanes

DOI: 10.1016/j.chemosphere.2019.125126 

Autors

Benjamin M King 1 , Nathan J Janechek 1 , Nathan Bryngelson 1 , Andrea Adamcakova-Dodd 2 , Traci Lersch 3 , Kristin Bunker 3 , Gary Casuccio 3 , Peter S Thorne 2 , Charles O Stanier 4 , Jennifer Fiegel 5 

1Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA.
2Department of Occupational and Environmental Health, The University of Iowa, 145 N. Riverside Dr., Iowa City, IA, 52242, USA.
3RJ Lee Group, 350 Hochberg Road, Monroeville, PA, 15146, USA.
4Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA. Electronic address: charles-stanier@uiowa.edu.
5Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA. Electronic address: jennifer-fiegel@uiowa.edu.

 

A549 Lung cells were exposed to the secondary organosilicon aerosols using the Vitrocell 6 air-liquid interface system.

Read more

Comments (0) Number of views (63)

25. Feb. 2020

Comparison of in vitro toxicity of aerosolized engineered nanomaterials using air-liquid interface mono-culture and co-culture models

https://doi.org/10.1016/j.impact.2020.100215

Autors

Yifang Wanga, Andrea,Adamcakova-Doddb, Benjamin R.Steinesb, Xuefang Jingb, Aliasger K.Salemc, Peter S.Thorneab
a Human Toxicology Interdisciplinary Program, University of Iowa, Iowa City, IA, USA
b Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
c College of Pharmacy, University of Iowa, Iowa City, IA, USA

 

Highlights
• An in vitro co-culture model utilizing endothelial and epithelial cells and differentiated macrophages was established.
• Air-liquid interface exposures to Ag-SiO2 and CuO nanoparticles produced cell death, oxidative stress and cytokine release.
• Mono- and co-culture models showed comparable excposure outcomes except that cytokines were higher in the co-culture system.
• Compared to epithelia cells or macrophages alone, responses to CuO in the co-culture model indicated cellular interaction

 

Read more

Comments (0) Number of views (305)

4. Nov. 2019

Investigation of multiple whole smoke dosimetry techniques using a VITROCELL®VC10® smoke exposure system

https://doi.org/10.1016/j.toxrep.2019.10.011

Brian M. Keysera, Robert Leverettea, Michael Hollingsb, Adam Seymourb, Lesley Reeveb, Wanda Fieldsa
a RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC, 27101, USA1
b Covance Laboratories Ltd., North Yorkshire, UK

 

Highlights
• Investigation of dose-determining methods using the Vitrocell® VC10® system.
• Dose assessment using Quartz Crystal Microbalances (QCM) and aerosol photometers.
• Dose assessment using fluorescence of DMSO-captured smoke constituents.
• QCM, photometer AUC, and DMSO-captured matter were consistent and reproducible

 

Read more

Comments (0) Number of views (1579)

25. Oct. 2019

Media Inserts for VITROCELL® Exposure Modules 6 and 12 Series

User Group Meeting 2019

Oliver Wisser1, Bastian Gutmann1, Adam Seymour2
1VITROCELL Systems GmbH 79183 Waldkirch, Germany
2Covance Laboratories Ltd Harrogate, UK

The poster shows the new media inserts.

Read more

Comments (0) Number of views (1809)

15. Oct. 2019

Lung cell exposure to secondary photochemical aerosols generated from OH oxidation of cyclic siloxanes

DOI: 10.1016/j.chemosphere.2019.125126

Autors

King BM1, Janechek NJ1, Bryngelson N1, Adamcakova-Dodd A2, Lersch T3, Bunker K3, Casuccio G3, Thorne PS2, Stanier CO4, Fiegel J5.

1 Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA.
2 Department of Occupational and Environmental Health, The University of Iowa, 145 N. Riverside Dr., Iowa City, IA, 52242, USA.
3 RJ Lee Group, 350 Hochberg Road, Monroeville, PA, 15146, USA.
4 Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA. Electronic address: charles-stanier@uiowa.edu.
5 Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA. Electronic address: jennifer-fiegel@uiowa.edu.

 

Highlights
• Oxidative flow reactor used to study effects of secondary aerosols on lung cells.
• Nanoparticulate aerosols generated from OH oxidation of D5, a cyclic siloxane.
• Acute exposures to 54–116 ng/cm2 achieved using the air-liquid interface (ALI) system.
• Cytotoxic and proinflammatory effects marginal or absent at these doses.

 

Read more

Comments (0) Number of views (93)

10. Mar. 2019

New Products at VITROCELL® User Group Meeting 2019

09 March 2019, Hilton Inner Harbour Hotel, Baltimore, USA

Following the VITROCELL® User Group Meeting 2018 in San Antonio, Texas, USA, international scientists from Europe, Japan, Korea and USA reconvened in March 2019.

The informal event organized into short presentations and posters was followed by open discussions. It was an excellent opportunity to discuss the latest developments of VITROCELL®, to exchange your experience in working with the equipment and to meet other fellow researchers.
The meeting took place prior to the international Society of Toxicology 58th Annual Meeting and ToxExpo, March 10 – 14, 2018, in Baltimore, USA - one of the largest international conferences related to toxicology.

Focus of the event was to share VITROCELL® activities since the last meeting, to exchange latest research results, to give an update on VITROCELL’s participation in major research programs as well as the presentation of new products for 2019.

Read more

Comments (0) Number of views (431)

5. Apr. 2018

A Case Study for the Comparison of In Vitro Data Across Multiple Aerosol Exposure Studies with Extrapolation to Human Dose

DOI: 10.1089/aivt.2017.0042

David Thorne, Emma Bishop, Linsey Haswell, and Marianna Gaca
British American Tobacco Group R&D, Southampton, United Kingdom

This case study has demonstrated that dosimetry techniques using particulate markers can allow in vitro biological data generated on five independent aerosol exposure system studies, under contrasting experimental designs and with different cell types, to be directly compared.

Read more

Comments (0) Number of views (934)

28. Mar. 2018

Characterization of a Vitrocell VC1 Using Nicotine Dosimetry: An Essential Component Toward Standardized In Vitro Aerosol Exposure of Tobacco and Next Generation Nicotine Delivery Products

DOI: 10.1089/aivt.2018.0001
Holger Behrsing,1 Mario Aragon,1 Jason Adamson,2 Devin Sheehan,1 Marianna Gaca,2 Rodger Curren,1 and Erin Hill1
1Respiratory Toxicology, Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland.
2R&D, British American Tobacco, Southampton, United Kingdom.

The study shows an assessment of VC1 aerosol generation that was conducted by measuring puff-by-puff in vitro nicotine concentration of 3R4F cigarettes (ISO and HCI regimes), e-cigarette (CRM81 puffing profile), and THP (HCIm regime). The aerosols were applied to in vitro or ex vivo cellular and tissue systems that model the respiratory tract, such as reconstructed human airways (RHuA), which are grown at the air–liquid interface (ALI). Additionally a comparison between the Vitrocell VC1 (U.S. Laboratory) and the VC10 (UK Laboratory) Smoking Robot was done.

 

Read more

Comments (0) Number of views (612)
RSS
1234567
Back to Top