Advanced in vitro exposure systems.

21. Oct. 2020

New Video: VITROCELL Cloud α – for Aerosol Research and Cell Exposure at the Air/Liquid Interface (ALI)

Cell exposure system for virus research, testing of inhaled drugs, chemicals and nanoparticles at the Air/Liquid Interface (ALI).

The VITROCELL® Cloud Alpha series is our newest innovation and presents a great leap forward in automated exposure of cell cultures. It combines reliable exposure of cell cultures from the respiratory tract with ease of use. This series is our new take on the well-known and frequently published VITROCELL® Cloud systems (6-, 12- and 24-well). Its functionality enables fully automated processes with an all-in-one control unit. Everyday experiments at the air/liquid interface have never been easier. The Cloud system is suitable for nebulization of solutions and suspensions. Possible fields of application are screening of inhaled drugs, virus research toxicity testing of inhaled substances such as chemicals or nanoparticles.

In response to the scientific need to expose in physiologically relevant conditions, the VITROCELL® Cloud Alpha exposure devices have been specifically designed to enable direct exposure of mammalian cells or tissue at the Air/Liquid Interface. Here the cell cultures are not covered with media as opposed to submerged conditions which cause an undesired inter­action of the formerly airborne substances with the culture media.

The video explains the procedures of the experiment.

 

Read more

Comments (0) Number of views (39)

28. Sep. 2020

NanoCELL - Comprehensive characterization and human toxicological assessment of cellulose nanocrystals along their life cycle for reliable risk assessment

Yvonne Kohl1, Roland Drexel2, Christine Herrmann3, Stephan Dähnhardt-Pfeiffer4, Siegfried Fürtauer5, Michelle Hesler1, Christoph Metzger3, Marielle Fink6, Dominik Selzer7, Thorsten Lehr7, Tobias Krebs6, Sven van Lengen8, Sylvia Wagner1, Hagen von Briesen1, Felix Grimm9, Petra Weißhaupt10, Heiko Briesen3, Florian Meier2


1Fraunhofer-Institut für Biomedizinische Technik IBMT, Sulzbach, Germany; 
2Postnova Analytics GmbH, Landsberg, Germany, 
3Technische Universität München, Lehrstuhl für Systemverfahrenstechnik, Freising, Germany 
4Microscopy Services Dähnhardt GmbH, Flintbek, Germany
5Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV, Freising, Germany
6VITROCELL Systems GmbH, Waldkirch, Germany
7Universität des Saarlands, Klinische Pharmazie, Saarbrücken, Germany 
8GRÜNPERGA Papier GmbH, Grünhainichen, Germany 
9INFIANA Germany GmbH & Co. KG, Forchheim, Germany
10Umweltbundesamt, Dessau-Roßlau, Germany

 

This poster shows the hazard studies on the effect of oral and pulmonary CNC uptake. Therefore a miniaturized cloud exposure system has been developed to create an in vitro model simulating the lung and the GI tract.

 

Read more

Comments (0) Number of views (44)

18. Sep. 2020

VITROCELL® Shisha Testing System for Cell Cultures

For in vitro testing of water pipe tobacco at the air / liquid interface

New designs of electronic cigarettes such as ENDS (Electronic Nicotine Delivery Systems) products or HTP (Heated Tobacco Products) lead to a large variety of different shapes which make the insertion into conventional holders with labyrinth seals impossible. VITROCELL® has developed a new holder system which is flexible to adjust to different shapes.

VITROCELL Application Note

Read more

Comments (0) Number of views (170)

16. Sep. 2020

Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL®Cloud cell exposure systems

https://doi.org/10.1186/s12989-020-00376-w


Yaobo Ding1,2 , Patrick Weindl1,2,3, Anke-Gabriele Lenz1,2, Paula Mayer1,2, Tobias Krebs3 and Otmar Schmid1,2
1Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Neuherberg, Germany
2Comprehensive Pneumology Center, Munich (CPC-M) - Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
3VITROCELL Systems GmbH, 79183 Waldkirch, Germany.

 

This study provides evidence that QCMs are suitable for real-time dosimetry in particle toxicology studies with cell cultures under air-liquid interface conditions. An experimental method for determination of LoD (lower limit of detection), accuracy and precision of QCMs using a fluorescent tracer (fluorescein salt) was presented and applied to the QCMs integrated in the VITROCELL® Cloud 6 and Cloud 12 aerosol-cell exposure systems.

 

Read more

Comments (0) Number of views (59)

24. Aug. 2020

Product News 08/2020

VITROCELL® Cloud Alpha 96

96-well Air/Liquid Interface (ALI) exposure. For reliable high throughput testing of cell cultures.

The VITROCELL® Cloud Alpha 96 is our newest innovation and presents a great leap forward in automated exposure of cell cultures. It combines high throughput testing with ease of use. The development is based on the well-known and frequently published VITROCELL® Cloud formats (6-, 12- and 24-well). It’s functionality enables fully automated processes with an all-in-one control unit. Everyday experiments at the air/liquid interface have never been easier.

VITROCELL® Cloud Alpha 96

Read more

Comments (0) Number of views (237)

27. Jul. 2020

Vitrocell® holder systems for e-cigarettes

Secure and tight connection of any device to the smoking machine.

New designs of electronic cigarettes such as ENDS (Electronic Nicotine Delivery Systems) products or HTP (Heated Tobacco Products) lead to a large variety of different shapes which make the insertion into conventional holders with labyrinth seals impossible. VITROCELL® has developed a new holder system which is flexible to adjust to different shapes.

VITROCELL Application Note

Read more

Comments (0) Number of views (329)

27. Jul. 2020

An In Vitro Lung System to Assess the Proinflammatory Hazard of Carbon Nanotube Aerosols

doi:10.3390/ijms21155335


Hana Barosova 1,2 , Bedia Begum Karakocak 1 , Dedy Septiadi 1 , Alke Petri-Fink 1,3, Vicki Stone 4 and Barbara Rothen-Rutishauser 1,
1 BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, 
2 Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
3 Department of Chemistry, University of Fribourg, 1700 Fribourg, Switzerland
4 Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK


The in vitro co-culture model consisting of three human cell lines were exposed at the ALI using the VITROCELL® Cloud system, equiped with QCM allowing to measure and record the deposited dose online. The nebulizer was ideal for the aerosols to suffciently mix within the entire chamber, hence resulting in uniform droplet deposition. This study shows, that this model is not limited to testing potentially hazardous nanomaterials to human cell line co-culture models.

 

Read more

Comments (0) Number of views (39)

26. Jul. 2020

Comparative toxicity of ultrafine particles around a major airport in human bronchial epithelial (Calu-3) cell model at the air–liquid interface

https://doi.org/10.1016/j.tiv.2020.104950

Authors

Rui-WenHeab, Miriam E.Gerlofs-Nijlanda, JohnBoerea, PaulFokkensa, DaanLesemana, Nicole A.H.Janssena, Flemming R.Casseeab
a National Institute for Public Health and the Environment (RIVM), P.O. Box, 3720, BA, Bilthoven, the Netherlands
b Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508, TD, Utrecht, the Netherland

 

Highlights

  • Airport and road traffic UFPs can activate inflammation in Calu-3 cells.
  • Airport UFPs exert similar toxicity compared to UFPs from road traffic emission.
  • ALI condition promotes cellular responses to particles at low exposed dose.

 

Read more

Comments (0) Number of views (76)

25. Jun. 2020

Novel TEM Grid holders for dose determination of airborne particles during in vitro Exposure at the air / liquid interface

The assessment of toxicological effects of airborne particles to the human organism is of major importance in disease research. The presence of nano and ultrafine particles can be found both in indoor and outdoor atmospheres which include workplaces and living areas. Over the last years, the degree of contribution to diseases of such particles is analyzed ever more frequent by the use of in vitro methods. The required equipment for these studies consisting of aerosol generation and exposure systems are nowadays developed more and more to proven levels.

VITROCELL Application Note.

Read more

Comments (0) Number of views (397)

21. May. 2020

A novel TEM grid sampler for airborne particles to measure the cell culture surface dose

Sonja Mülhopt1, Christoph Schlager2, Markus Berger2, Sivakumar Murugadoss3, Peter H. Hoet3, Tobias Krebs2, Hanns-Rudolf paur1 & Dieter Stapf1
1Karlsruhe Institute of Technology (KIT), Institute for Technical Chemistry, Eggenstein-Leopoldshafen, 76344, Germany. 
2Vitrocell Systems GmbH, Waldkirch, 79183, Germany. 
3KU Leuven, Environment and Health, Leuven, 3000, Belgium.

 

The surface dose and the spatial distribution on the membrane delivers important data for  measuring dose-response relationships in toxicity studies.  Image evaluation of transmission electron  microscopy (TEM) samples is a highly sensitive method for determination of deposition. This paper reports  the development and characterization of a novel holder for film coated TEM copper grids, which allows for  sampling under identical geometric and ambient conditions as in a cell culture chamber. 

 

Read more

Comments (0) Number of views (267)
RSS
12345678
Back to Top