Advanced in vitro exposure systems.

23. Feb. 2021

Product News 02/2021

The New VITROCELL® RH/T-Controller

Reliable digital Humidity- and Temperature Measurement

The VITROCELL® RH/T-Controller system was designed to measure temperature and relative humidity in numerous applications at high precision. It can be fitted to humidification systems, aerosol ducts and climatic chambers.

VITROCELL® RH/T-Controller – Reliable digital Humidity- and Temperature Measurement

 

Read more

Comments (0) Number of views (40)

22. Jan. 2021

Product News 01/2021

The New VITROCELL® Cloud Alpha MAX

Smallest nebulization volumes and high deposition efficiency

The VITROCELL® Cloud Alpha MAX is designed for small nebulization volumes and very high deposition efficiency. This is important when only small quantities of material are available or when expensive test substances need to be tested.

VITROCELL® Cloud Alpha MAX – Ideal for small quantities of test substance

 

Read more

Comments (0) Number of views (183)

15. Jan. 2021

New Video: VITROCELL Cloud Alpha – Product Family Overview

For virus research, testing of inhaled drugs, chemicals and nanoparticles at the Air/Liquid Interface (ALI). The systems are suitable for nebulized solutions and suspensions.

The VITROCELL® Cloud α series is our newest innovation and presents a great leap forward in automated exposure of cell cultures. It combines reliable exposure of cell cultures from the respiratory tract with ease of use. The series comprises the Cloud Alpha 6, Cloud Alpha 12, Cloud Alpha 96 and Cloud Alpha MAX – they represent an optimal solution for everyday experiments at the Air/Liquid Interface using 6-well, 12-well, 24-well or 96-sized inserts.

This video showcases available product configurations.

 

Read more

Comments (0) Number of views (279)

29. Dec. 2020

Air–Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects

https://doi.org/10.3390/nano11010065

 

Silvia Diabaté 1, Lucie Armand 2, Sivakumar Murugadoss 1 , Marco Dilger 1 , Susanne Fritsch-Decker 1, Christoph Schlager 3, David Béal 2, Marie-Edith Arnal 2, Mathilde Biola-Clier 2, Selina Ambrose 4, Sonja Mülhopt 3, Hanns-Rudolf Paur 3, Iseult Lynch 5 , Eugenia Valsami-Jones 5 , Marie Carriere 2, and Carsten Weiss 1

1 Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems–Biological Information Processing, 76344 Eggenstein-Leopoldshafen, Germany;
2 CEA, CNRS, IRIG, SyMMES, University Grenoble Alpes, 38054 Grenoble, France;
3 Karlsruhe Institute of Technology, Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany; 
4 Promethean Particles Ltd., Nottingham NG7 3EF, UK;
5 School of Geography Earth & Environmental Sciences (GEES), University of Birmingham (UoB), Edgbaston, Birmingham B15 2TT, UK;

 

KIT, together with VITROCELL SYSTEMS, set up a first Automated Exposure Station, which has been used for the assessment of nanoscale particle emissions from combustion sources such as ship diesel and wood burners. The system was further developed and offers a compact solution for toxicity testing of nanoparticle (NP) aerosols including sample conditioning, reproducible deposition, integrated dose determination by a quartz crystal microbalance (QCM), flow control, automated processes and data acquisition. The device was also tested with partner laboratories with the aim of potentially standardizing and achieving regulatory acceptance of the method.

 

Read more

Comments (0) Number of views (73)

30. Nov. 2020

Product News 12/2020

VITROCELL® 12/12 now available with Climatic Chamber

For reliable aerosol exposure of cell cultures using 12- or 24-well sized inserts

The VITROCELL® 12/12 module system has been designed to facilitate the exposure of mammalian cell cultures to airborne substances such as gases, complex mixtures, nanoparticles and fibers. It features a throughput of 3 dilution steps @ 3 replicates and 1 clean air control at 3 replicates. In order to optimize the exposure for liquid aerosols and to maximize the performance of humidified air supply it is now also available in a user-friendly climatic chamber.

VITROCELL® 12/12 now available with Climatic Chamber

Read more

Comments (0) Number of views (321)

28. Nov. 2020

Parametric Optimization of an Air–Liquid Interface System for Flow-Through Inhalation Exposure to Nanoparticles: Assessing Dosimetry and Intracellular Uptake of CeO2 Nanoparticles

doi:10.3390/nano10122369

Lars B. Leibrock 1, Harald Jungnickel 1, Jutta Tentschert 1, Aaron Katz 1, Blaza Toman 2 , Elijah J. Petersen 3 , Frank S. Bierkandt 1, Ajay Vikram Singh 1 , Peter Laux 1 and Andreas Luch 1
1 German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; 
2 Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaitherburg, MD 20899-8311, USA; 
3 Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaitherburg, MD 20899-8311, USA; 

 

ALI systems are considered to be a promising exposure system to study toxicological e ects of airborne nanomaterials instead of in vivo inhalation studies and have been widely used to assess the toxicology of nanomaterials in recent years. However, the robustness of these methods is not yet wellunderstood. Here we reported a C&E analysis of a commonly used flow through ALI exposure system.

 

Read more

Comments (0) Number of views (65)

2. Nov. 2020

Toxicological responses of BEAS-2B cells to repeated exposures to benzene, toluene, m-xylene, and mesitylene using air–liquid interface method

DOI: 10.1002/jat.4113


Clémence Méausoone1, Yann Landkocz1, Fabrice Cazier2, Marianne Seigneur1 Dominique Courcot1, Sylvain Billet1
1Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkirk, France
2Centre Commun de Mesures, Université du Littoral Côte d'Opale, Dunkirk, France

 

Benzene and toluene are solvents largely used in industries and emitted into the atmosphere, despite major and direct impacts on human health. This study shows the feasibility of observing mechanisms of toxic action during repeated exposure at ALI to doses close to human exposure. The second strength of this study was the measure of XME induction level with the initiation of several xenobiotic metabolism pathways over time. BEAS-2B cells were exposed to benzene, toluene, m-xylene, or mesitylene gaseous stream diluted in air using the Vitrocell ALI system.

 

Read more

Comments (0) Number of views (17)

21. Oct. 2020

New Video: VITROCELL Cloud Alpha – for Aerosol Research and Cell Exposure at the Air/Liquid Interface (ALI)

Cell exposure system for virus research, testing of inhaled drugs, chemicals and nanoparticles at the Air/Liquid Interface (ALI).

The VITROCELL® Cloud Alpha series is our newest innovation and presents a great leap forward in automated exposure of cell cultures. It combines reliable exposure of cell cultures from the respiratory tract with ease of use. This series is our new take on the well-known and frequently published VITROCELL® Cloud systems (6-, 12- and 24-well). Its functionality enables fully automated processes with an all-in-one control unit. Everyday experiments at the air/liquid interface have never been easier. The Cloud system is suitable for nebulization of solutions and suspensions. Possible fields of application are screening of inhaled drugs, virus research toxicity testing of inhaled substances such as chemicals or nanoparticles.

In response to the scientific need to expose in physiologically relevant conditions, the VITROCELL® Cloud Alpha exposure devices have been specifically designed to enable direct exposure of mammalian cells or tissue at the Air/Liquid Interface. Here the cell cultures are not covered with media as opposed to submerged conditions which cause an undesired inter­action of the formerly airborne substances with the culture media.

The video explains the procedures of the experiment.

 

Read more

Comments (0) Number of views (490)

8. Oct. 2020

Alternative air–liquid interface method for inhalation toxicity testing of a petroleum-derived substance

https://doi.org/10.1016/j.mex.2020.101088


Verstraelen Sandra a , Jacobs An a , Van Laer Jo a , Van Deun Masha b , Bertels Diane b , Hilda Witters a , Remy Sylvie a , c , Geerts Lieve a , Deferme Lize d , Frijns Evelien a
a VITO NV (Flemish Institute for Technological Research), Unit HEALTH, Mol, Belgium 
b VITO NV, Unit SCT (Separation and Conversion Technology), Mol, Belgium 
c Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium 
d ExxonMobil Petroleum and Chemical B.V., Machelen, Belgium

 

A549 cells were exposed to gasoline at the ALI by passive dosing, an approach that is already used in aquatic toxicity testing. This showes a clear dose-dependent biological response. This in vitro -based new approach methodology might be promising for inhalation toxicity testing of (semi-)volatile complex substances.

 

Read more

Comments (0) Number of views (21)

29. Sep. 2020

Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells—overview and perspectives

https://doi.org/10.1007/s11626-020-00517-7


Xuefei Cao1, Jayme P. Coyle2, Rui Xiong1, Yiying Wang1, Robert H. Heflich1, Baiping Ren1, William M. Gwinn3, Patrick Hayden4, Liying Rojanasakul2

1 Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR Jefferson, USA
2 Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers forDisease Control and Prevention,Morgantown,WV, USA
3 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, USA
4 BioSurfaces Inc., Ashland, MA, USA


One important element for validating any new assay for making regulatory decisions is determining its performance relative to an accepted standard. Conducting in vivo inhalation toxicity studies using whole-body or nose-only exposure systems is expensive and time-consuming and typically requires a large number of animals. The goal of using alternative methods, like human in vitro ALI airway cultures, ultimately is to replace inhalation toxicity testing in animals with in vitro approaches. Transition from animal- to human-based models is ultimately expected to lead to faster and better predictive toxicity assessments and therapeutic development at lower cost.  This study shows the development and validation of alternative in vitro methods for acute toxicity testing, including acute inhalation toxicity testing.
 

Read more

Comments (0) Number of views (58)
RSS
12345678910Last
Back to Top