Advanced in vitro exposure systems.

22. Aug. 2022

Carbon nanoparticles adversely affect CFTR expression and toxicologically relevant pathways

https://doi.org/10.1038/s41598-022-18098-8

Torben Stermann1, Thach Nguyen1, Burkhard Stahlmecke2, Ana Maria Todea2, Selina Woeste1, Inken Hacheney1, Jean Krutmann1,3, Klaus Unfried1, Roel P. F. Schins1 & Andrea Rossi1
1IUF – Leibniz-Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Duesseldorf, Germany. 
2IUTA – Institut für Energie- und Umwelttechnik e.V., Duisburg, Germany. 
3Medical Faculty, Heinrich Heine University, Düsseldorf, Germany. *email: andrea.rossi@iuf-duesseldorf.de

 

In the present study the 16HBE14o- cells were exposed in an automated exposure station at air-liquid interface conditions, using the controlled generation of carbon nanoparticles (CNP) aerosols by spark-ablation. This study reports that CNP exposure leads to decrease cystic fibrosis transmembrane conductance regulator (CFTR) expression accompanied by transcriptomic signs of oxidative stress, apoptosis and DNA damage.

 

Read more

Comments (0) Number of views (76)

1. Mar. 2022

The priming effect of diesel exhaust on native pollen exposure at the air-liquid interface

https://doi.org/10.1016/j.envres.2022.112968


Joana Candeiasa, Elias J. Zimmermannbc, Christoph Bisigb, Nadine Gawlittabc, Sebastian Oederb, Thomas Grögerb, Ralf Zimmermannbc, Carsten B. Schmidt-Webera, Jeroen Butersa
a Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich / Helmholtz Center Munich, Germany
b Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
c Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany

 

Human bronchial epithelial BEAS-2B cells were exposed to native birch pollen (real life intact pollen, not pollen extracts) at the air-liquid interface (pollen-ALI). BEAS-2B cells were also pre-exposed in a diesel-ALI to diesel CAST for 2 h (a model for diesel exhaust) and then to pollen in the pollen-ALI 24 h later. Effects were analysed by genome wide transcriptome analysis after 2 h 25 min, 6 h 50 min and 24 h. Selected genes were confirmed by qRT-PCR.

 

Read more

Comments (0) Number of views (181)

3. Feb. 2022

Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air–Liquid Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols (SOAs

https://doi.org/10.1289/EHP9413

Svenja Offer,1,2Elena Hartner,1,2Sebastiano Di Bucchianico,1Christoph Bisig,1Stefanie Bauer,1Jana Pantzke,1,2Elias J. Zimmermann,1,2Xin Cao,1,2Stefanie Binder,1,2Evelyn Kuhn,1Anja Huber,1Seongho Jeong,1,2Uwe Käfer,1,2Patrick Martens,2Arunas Mesceriakovas,3Jan Bendl,1,4,5Ramona Brejcha,1Angela Buchholz,6Daniella Gat,[...]

1 Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
2 JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
3 Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
4 Institute for Chemistry and Environmental Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
5 Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
6 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
7 Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
8 Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
9 Department of Environmental Sciences, University of Basel, Basel, Switzerland
10 Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
11 Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany

 

Read more

Comments (0) Number of views (73)

1. Feb. 2022

Automation and Standardization—A Coupled Approach Towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis

https://doi.org/10.3390/molecules27030985

Jörg Radnik 1, Vasile-Dan Hodoroaba 1, Harald Jungnickel 2, Jutta Tentschert 2, Andreas Luch 2, Vanessa Sogne 3, Florian Meier 3, Loïc Burr 4, David Schmid 4, Christoph Schlager 5, Tae Hyun Yoon 6,7, Ruud Peters 8, Sophie M. Briffa 9 and Eugenia Valsami-Jones 9


1 Division 6.1, Federal Institute for Material Testing and Research (BAM), Unter den Eichen 44–46, 12203 Berlin, Germany;
2 Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8–10, 10589 Berlin, Germany; 
3 Postnova Analytics GmbH, Rankine-Strasse 1, 86899 Landsberg, Germany;
4 Centre Suisse d’Electronique et de Microtechnique (CSEM), Bahnhofstrasse 1, 7302 Landquart, Switzerland;
5 Vitrocell Systems GmbH, Fabrik Sonntag 3, 78193 Waldkirch, Germany; c.schlager@vitrocell.com
6 Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea;
7 Institute of Next Generation Material Design, Hanyang University, Seoul 04673, Korea
8 Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 Wageningen, The Netherlands;
9 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK;

 

The aim of this publication is to discuss how and when automated preparation can enhance the quality of the measurement results. For modern apparatuses, the measurement conditions are recorded and saved in the metadata automatically. As a result, the main reason for varying results is the different sample preparation. An actual interlaboratory comparison is ongoing to investigate the effect of different preparation methods systematically for ToF-SIMS. An air–liquid interface was developed to show that automation is possible for rather complex samples. Biological samples can be prepared in a reproducible manner, under exactly the same conditions on a TEM grid for the analysis of size and shape. Furthermore, chemical analysis can be performed by means of mass spectrometry.

 

Read more

Comments (0) Number of views (272)

27. Nov. 2021

Agglomeration State of Titanium-Dioxide (TiO2) Nanomaterials Influences the Dose Deposition and Cytotoxic Responses in Human Bronchial Epithelial Cells at the Air-Liquid Interface

https://doi.org/10.3390/nano11123226

Sivakumar Murugadoss 1, Sonja Mülhopt 2, Silvia Diabaté 3, Manosij Ghosh 1, Hanns-Rudolf Paur 2,
Dieter Stapf 2, Carsten Weiss 3, and Peter H. Hoet 1,

1 Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
2 Institute for Technical Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
3 Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

 

In this study, they investigated the influence of agglomeration on the deposition and cytotoxic potency of TiO2 NMs at the ALI. Our results indicate that dose deposition and the cytotoxic potential are influenced by agglomeration, particularly for nano-sized TiO2 particles.

 

Read more

Comments (0) Number of views (596)

12. Aug. 2021

Product News 08/2021

VITROCELL® Remote Assist Support

Let us lend you a helping hand via HoloLens

VITROCELL in vitro exposure systems are specifically manufactured according to customer specifications. Our customers in the field of research & development typically have very complex requirements for the system. This is why a VITROCELL technician is required to carry out product training as well as service & support.
We strive to provide rapid responses and problem-solving for VITROCELL users all over the world.

VITROCELL® Remote Assist Support  (PDF)

Read more

Comments (0) Number of views (1003)

27. Jun. 2021

Impact of Nanocomposite Combustion Aerosols on A549 Cells and a 3D Airway Model

https://doi.org/10.3390/nano11071685

Matthias Hufnagel 1, Nadine May 2, Johanna Wall 1, Nadja Wingert 3, Manuel Garcia-Käufer 3, Ali Arif 3, Christof Hübner 4, Markus Berger 5, Sonja Mülhopt 2, Werner Baumann 2, Frederik Weis 6, Tobias Krebs 5, Wolfgang Becker 4, Richard Gminski 3, Dieter Stapf 2, and Andrea Hartwig 1,


1 Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
2 Institute for Technical Chemistry, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany; 
3 Institute for Infection Prevention and Hospital Epidemiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany;
4 Fraunhofer Institute of Chemical Technology, 76327 Pfinztal, Germany; 
5 Vitrocell® Systems GmbH, 79183 Waldkirch, Germany; 
6 Palas GmbH, 76229 Karlsruhe, Germany; 

 

This study was the first to investigate the toxicological effects of well characterized aerosols released during combustion of thermoplastic nanocomposites using an air–liquid interface exposure system. Even though studies on the toxicological potential of combustion-generated particulate matter as well as VOCs have been published, none of them was designed to investigate the effect of the native aerosol using appropriate realistic lung cell culture models. In the current study we investigated the combustion behavior of PE-based nanocomposites on a lab-scale burner. As nanoscaled fillers TiO2 NP, CuO NP, as well as CNT were chosen for this study, with TiO2 NP representing a commonly used insoluble and inert nanomaterial, CuO NP as a known in vitro cyto- as well as genotoxic nanomaterial, and CNT as a fiber-shaped nanomaterial.

Read more

Comments (0) Number of views (991)

21. Jun. 2021

In vitro hazard characterization of simulated aircraft cabin bleed-air contamination in lung models using an air-liquid interface (ALI) exposure system

https://doi.org/10.1016/j.envint.2021.106718

Rui-Wen He a,b, Marc M.G. Houtzager c, W.P. Jongeneel a, Remco H.S. Westerink b, Flemming R. Cassee a,b

a National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, the Netherlands
b Institute for Risk Assessment Sciences (IRAS), Toxicology Division, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, the Netherlands
c The Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 80015, 3508 TA Utrecht, the Netherlands

 

This unique experimental “Mini-BACS + AES” setup is able to provide steady conditions to perform in vitro exposure under ALI conditions to aircraft engine oil and hydraulic fluid fumes, generated at respectively 350 ◦C and 200 ◦C. Exposure of the Calu-3 monoculture and Calu-3 + MDM co-culture lung cell models to high levels of aircraft engine oil and hydraulic fluid fumes under ALI conditions can reduce TEER and viabilities of the cells, induce cytotoxicity, and increase production of proinflammatory cytokines. Hydraulic fluid fumes are more toxic than engine oil fumes on the mass concentration of fume basis, which may be related to higher abundance of OPs and smaller particle size of hydraulic fluid fumes. The toxicological data clearly reflect the potential health risks during fume events in aircraft cabins.

 

Read more

Comments (0) Number of views (761)

15. Feb. 2021

Impact of Sea Breeze Dynamics on Atmospheric Pollutants and Their Toxicity in Industrial and Urban Coastal Environments

doi:10.3390/rs12040648

Patrick Augustin 1, Sylvain Billet 2 , Suzanne Crumeyrolle 3, Karine Deboudt 1, Elsa Dieudonné 1 , Pascal Flament 1 , Marc Fourmentin 1 , Sarah Guilbaud 1, Benjamin Hanoune 4 , Yann Landkocz 2, Clémence Méausoone 2, Sayahnya Roy 5, François G. Schmitt 5, Alexei Sentchev 5 and Anton Sokolov 1
1 Univ. Littoral Côte d’Opale, UR 4493—LPCA—Laboratoire de Physico-Chimie de l’Atmosphère, 59140 Dunkerque, France;
2 Univ. Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, UR 4492—UCEiV—Unité de Chimie Environnementale et Interactions sur le Vivant, 59140 Dunkerque, France; 
3 Univ. Lille, CNRS, UMR 8518—LOA—Laboratoire d’Optique Atmosphérique, 59000 Lille, France;
4 Univ. Lille, CNRS, UMR 8522—PC2A—Physico-Chimie des Processus de Combustion et de l’Atmosphère, 59000 Lille, France; 
5 Univ. Lille, Univ. Littoral Côte d’Opale, CNRS, UMR 8187—LOG—Laboratoire d’Océanologie et de Géosciences, F 62930 Wimereux, France; 

 

An atmospheric mobile unit was implemented during a field campaign performed at a representative site of urbanized and industrialized coastal environment of the North Sea (Northern France), to study the impact of sea breeze dynamics on aerosol properties, and especially their toxicity. This unit combined aerosol samplers, two scanning lidars (Doppler and elastic), two aerosol particle sizers and an air-liquid interface (ALI, Vitrocell) in vitro cell exposure device. This study is one of the first to bring cell cultures into the field to evaluate the harmfulness of a real environmental compartment. Atmospheric toxicity in the presence or absence of sea breeze was demonstrated in human bronchial cells exposed in the field using an ALI exposure system. The study showed the sensitivity of the developed device to discriminate the mechanisms of toxic action activated when exposed to different atmospheres.

 

Read more

Comments (0) Number of views (590)

29. Dec. 2020

Air–Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects

https://doi.org/10.3390/nano11010065

 

Silvia Diabaté 1, Lucie Armand 2, Sivakumar Murugadoss 1 , Marco Dilger 1 , Susanne Fritsch-Decker 1, Christoph Schlager 3, David Béal 2, Marie-Edith Arnal 2, Mathilde Biola-Clier 2, Selina Ambrose 4, Sonja Mülhopt 3, Hanns-Rudolf Paur 3, Iseult Lynch 5 , Eugenia Valsami-Jones 5 , Marie Carriere 2, and Carsten Weiss 1

1 Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems–Biological Information Processing, 76344 Eggenstein-Leopoldshafen, Germany;
2 CEA, CNRS, IRIG, SyMMES, University Grenoble Alpes, 38054 Grenoble, France;
3 Karlsruhe Institute of Technology, Institute for Technical Chemistry, 76344 Eggenstein-Leopoldshafen, Germany; 
4 Promethean Particles Ltd., Nottingham NG7 3EF, UK;
5 School of Geography Earth & Environmental Sciences (GEES), University of Birmingham (UoB), Edgbaston, Birmingham B15 2TT, UK;

 

KIT, together with VITROCELL SYSTEMS, set up a first Automated Exposure Station, which has been used for the assessment of nanoscale particle emissions from combustion sources such as ship diesel and wood burners. The system was further developed and offers a compact solution for toxicity testing of nanoparticle (NP) aerosols including sample conditioning, reproducible deposition, integrated dose determination by a quartz crystal microbalance (QCM), flow control, automated processes and data acquisition. The device was also tested with partner laboratories with the aim of potentially standardizing and achieving regulatory acceptance of the method.

 

Read more

Comments (0) Number of views (666)
RSS
123
Back to Top