Advanced in vitro exposure systems.

1. Jun. 2022

Product News 05-4/2022

VITROCELL® PowderX

For cell culture exposure to smallest quantities of dry powders

The VITROCELL® PowderX allows for aerosolisation of small quantities of dry powders and particle deposition on cells cultured on 12- or 24-well sized inserts. The system features biological barrier integration and continuous sampling from the basolateral compartment.

VITROCELL® PowderX  (PDF)

Read more

Comments (0) Number of views (146)

11. Apr. 2022

Product News 04-3/2022

VITROCELL® Cloud Alpha AX12

Aerosol exposure for breathing AX Lung-on-Chip

The VITROCELL® Cloud Alpha AX12 is our newest innovation in the Cloud family and presents a great leap forward in automated exposure of cell cultures with breathing function. It combines highly efficient testing with ease of use. The development is based on the well-known and frequently published VITROCELL® Cloud formats (6-, 12-, 24- and 96-well).
Its functionality enables fully automated processes with an all-in-one control unit. Everyday experiments at the Air/Liquid Interface have never been easier.

It is suitable for the nebulization of solutions and suspensions. Fields of application are, but are not limited to, screening of inhaled drugs and toxicity testing of inhaled substances such as chemicals, nanoparticles and airborne pathogens.

VITROCELL® Cloud Alpha AX 12  (PDF)

Read more

Comments (0) Number of views (437)

6. Apr. 2022

Product News 04-2/2022

VITROCELL® Smoking Machine VC 1 2.0

Manual smoking machine with high tech features

The VC 1 smoking machine is used for a controlled aerosol generation of combustion cigarettes as well as of next generation devices such as Heated Tobacco Products (HTP) and electronic nicotine delivery systems (ENDS). Special attention was given to guarantee very flexible programming of the smoking parameters. The properties of the aerosol are maintained due to small dead volumes of the system.

VITROCELL® Smoking Machine VC 1 2.0  (PDF)

Read more

Comments (0) Number of views (403)

4. Apr. 2022

Product News 04-1/2022

VITROCELL® Cloud Alpha PowerVent 

Increase of nebulizations and evacuation of residual gaseous compounds

A typical Cloud exposure allows 3 consecutive nebulizations. The PowerVent option enables an increase of the dose by adding further nebulizations. After each nebulization the humidity is removed by a short venting period before starting the new one. The venting function can be edited in the software. The PowerVent unit is delivered ready-to-use with an integrated vacuum pump.

VITROCELL® Cloud Alpha PowerVent  (PDF)

Read more

Comments (0) Number of views (269)

1. Mar. 2022

The priming effect of diesel exhaust on native pollen exposure at the air-liquid interface

https://doi.org/10.1016/j.envres.2022.112968


Joana Candeiasa, Elias J. Zimmermannbc, Christoph Bisigb, Nadine Gawlittabc, Sebastian Oederb, Thomas Grögerb, Ralf Zimmermannbc, Carsten B. Schmidt-Webera, Jeroen Butersa
a Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich / Helmholtz Center Munich, Germany
b Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
c Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany

 

Human bronchial epithelial BEAS-2B cells were exposed to native birch pollen (real life intact pollen, not pollen extracts) at the air-liquid interface (pollen-ALI). BEAS-2B cells were also pre-exposed in a diesel-ALI to diesel CAST for 2 h (a model for diesel exhaust) and then to pollen in the pollen-ALI 24 h later. Effects were analysed by genome wide transcriptome analysis after 2 h 25 min, 6 h 50 min and 24 h. Selected genes were confirmed by qRT-PCR.

 

Read more

Comments (0) Number of views (86)

3. Feb. 2022

Product News 02-1/2022

VITROCELL® Cloud Advanced Nebulizer

For liquid droplet sizes 9 – 12 μm with diffusor

Certain chemicals or formulations, for example nasal sprays, often have larger particle sizes than the mesh size of standard nebulizers (4.0 – 6.0 μm). The VITROCELL Cloud Advanced Nebulizer is enlarging the application areas of Cloud Exposure Systems. This special type offers the possibility to produce an aerosol containing particles in the range of 9.0 – 12.0 μm.
Our patented Cloud diffusor ensures a homogeneous distribution of even the larger droplet sizes in the Cloud Exposure Chamber. To avoid effects from larger droplet formations it has an integrated drain channel.

VITROCELL® Cloud Advanced Nebulizer  (PDF)

Read more

Comments (0) Number of views (585)

19. Jan. 2022

Product News 01/2022

VITROCELL® Photometer 2.0

Online measurement of particle concentrations

VITROCELL® Photometers are specifically designed and developed to enable online measurements of particle concen­trations. The working principe is light-scattering. They may be placed inline at various locations of the exposure system without particles losses – even at low flow rates.

VITROCELL® Photometer 2.0  (PDF)

Read more

Comments (0) Number of views (414)

9. Dec. 2021

Iota-carrageenan extracted from red algae is a potent inhibitor of SARS-CoV-2 infection in reconstituted human airway epithelia

https://doi.org/10.1016/j.bbrep.2021.101187

David Bovard b, Marco van der Toorn b, Walter K. Schlage a, Samuel Constant c, Kasper Renggli b, Manuel C. Peitsch b, Julia Hoeng b,
a Biology Consultant, Max-Baermann-Str. 21, 51429, Bergisch Gladbach, Germany
b PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchaˆtel, Switzerland
c Epithelix Sarl, 18 Chemin des Aulx, Plan-les-Ouates, 1228, Geneva, Switzerland

 

This study successfully demonstrates the exposure of human bronchial epithelial cultures to defined doses of nebulized Iota-carrageenan which were reproducibly generated and administered using the VITROCELL Cloud 12 system. 
The aim of this study was to further investigate the efficacy and safety of IC treatment on SARS-CoV-2 infection by using advanced in vitro models of human respiratory epithelium, the primary target and entry port of SARS-CoV-2. The experimental models were 3D cultures of reconstituted bronchial and nasal epithelia, representing the surface of the human upper respiratory tract. This apical exposure of reconstructed epithelia more closely mimics real-life exposure conditions and the absence of toxicity or any functional or structural impairment of the bronchial mucociliary epithelium demonstrates that topical treatment with nebulized IC is well tolerated at the effective concentrations. 

 

Read more

Comments (0) Number of views (595)

12. Nov. 2021

Product News 11/2021

VITROCELL® S-QCM

Improved Sensor for High Precision Real-Time Dose Monitoring

The VITROCELL® sQCM 12 is the next step in the evolution of dosimetry methods in cell culture exposure systems. It simplifies the usage of conventional Quartz Crystal Microbalances suitable for VITROCELL® 12 modules while maintaining the working principle, precision and accuracy of the balances you’re used to.

VITROCELL® S-QCM  (PDF)

Read more

Comments (0) Number of views (677)

27. Jun. 2021

Impact of Nanocomposite Combustion Aerosols on A549 Cells and a 3D Airway Model

https://doi.org/10.3390/nano11071685

Matthias Hufnagel 1, Nadine May 2, Johanna Wall 1, Nadja Wingert 3, Manuel Garcia-Käufer 3, Ali Arif 3, Christof Hübner 4, Markus Berger 5, Sonja Mülhopt 2, Werner Baumann 2, Frederik Weis 6, Tobias Krebs 5, Wolfgang Becker 4, Richard Gminski 3, Dieter Stapf 2, and Andrea Hartwig 1,


1 Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
2 Institute for Technical Chemistry, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany; 
3 Institute for Infection Prevention and Hospital Epidemiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany;
4 Fraunhofer Institute of Chemical Technology, 76327 Pfinztal, Germany; 
5 Vitrocell® Systems GmbH, 79183 Waldkirch, Germany; 
6 Palas GmbH, 76229 Karlsruhe, Germany; 

 

This study was the first to investigate the toxicological effects of well characterized aerosols released during combustion of thermoplastic nanocomposites using an air–liquid interface exposure system. Even though studies on the toxicological potential of combustion-generated particulate matter as well as VOCs have been published, none of them was designed to investigate the effect of the native aerosol using appropriate realistic lung cell culture models. In the current study we investigated the combustion behavior of PE-based nanocomposites on a lab-scale burner. As nanoscaled fillers TiO2 NP, CuO NP, as well as CNT were chosen for this study, with TiO2 NP representing a commonly used insoluble and inert nanomaterial, CuO NP as a known in vitro cyto- as well as genotoxic nanomaterial, and CNT as a fiber-shaped nanomaterial.

Read more

Comments (0) Number of views (881)
RSS
123456
Back to Top