Advanced in vitro exposure systems.

15. Nov. 2020

The Comparative Analysis of Cytokine Production by a Human 3D Tissue Model Following Exposure to Traditional Cigarette Smoke, Tobacco-Heated Product and E-Cigarette Aerosol

Rob Bedford1, Emma Rothwell1, Sophie Martin1, Cian O’Hanlon1, Andrew McCune2 and Michael Hollings1
1Genetic and Molecular Toxicology and 2Immunology and Immunotoxicology, Covance Laboratories Ltd., Harrogate, UK

 

- Exposure to 3R4F resulted in increased levels of IL-4, MDC, GM-CSF, IL-12/IL23p40, IL-10 and IFN-γ in the recovery media. Approximately three-fold increases in MDC, GM-CSF, IL-12/IL23p40 and IFNγ were observed whilst two-fold increases were observed for IL-4 and IL-10. In comparison, no marked effect was observed in the module media.

- In contrast to the response observed from 3R4F exposure, fewer changes in cytokine production were observed following THP and E-cigarette exposure. IFNγ demonstrated a two-fold increase in levels measured in the recovery media at doses 1 and 2 for THP. IL-12/IL23p40 also demonstrated a 1.5-fold increase in recovery media following exposure to THP. In addition, IFN-γ and IL-8 were increased following exposure to E-cigarette at dose 2. IL-1β also demonstrated a 1.5-fold increase in the recovery and module media following exposure to E-cigarette.

- A number of cytokines were reduced following exposure to THP and E-cigarette. For example, GM-CSF, MIP1α, VEGF and MCP-1.

- These results demonstrate the difference in cytokine profiles of MucilAir tissues following exposure to different nicotine-containing products.

 

Read more

Comments (0) Number of views (108)

11. Nov. 2020

Exposure of cellulose nanocrystals on human lung cells at the air-liquid-interface

Best poster prize award at the Euro 2020 OpenTox Virtual Conference on September 21-25, 2020.

Michelle Hesler1, Annika Kittel1, Stephan Dähnhardt-Pfeiffer2, Christoph Metzger3, Christine Herrmann3, Marielle Fink4, Heiko Briesen3, Tobias Krebs4, Hagen von Briesen1, Sylvia Wagner1, Yvonne Kohl1
1 Fraunhofer Institut für Biomedizinische Technik IBMT, Sulzbach, Germany, 
2 Microscopy Services Dähnhardt GmbH, Flintbek, Germany, 
3 Lehrstuhl für Systemverfahrenstechnik, Technische Universität München, Freising, Germany, 
4 VITROCELL Systems GmbH, Fabrik Sonntag 3, Waldkirch, Germany

 

- In vitro aerosol exposure studies were performed with an air-liquid-interface (ALI)-lung model consisting of A549 (epithelial cells), EA.hy926 (endothelial cells) and THP-1 (macrophages) cells.
- Two different types of CNC extracted from α-cellulose (CNC-W) and pulp (CNC-G) by sulfuric acid hydrolysis were studied in a concentration of 100 μg/ml applied as aerosols with VITROCELL® Cloud system.
- Single and multiple exposure with and without a 24 h regeneration phase were compared.
- Endpoints of the study: Cell viability, ROS generation and DNA damage.

 

Read more

Comments (0) Number of views (162)

2. Nov. 2020

Toxicological responses of BEAS-2B cells to repeated exposures to benzene, toluene, m-xylene, and mesitylene using air–liquid interface method

DOI: 10.1002/jat.4113


Clémence Méausoone1, Yann Landkocz1, Fabrice Cazier2, Marianne Seigneur1 Dominique Courcot1, Sylvain Billet1
1Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkirk, France
2Centre Commun de Mesures, Université du Littoral Côte d'Opale, Dunkirk, France

 

Benzene and toluene are solvents largely used in industries and emitted into the atmosphere, despite major and direct impacts on human health. This study shows the feasibility of observing mechanisms of toxic action during repeated exposure at ALI to doses close to human exposure. The second strength of this study was the measure of XME induction level with the initiation of several xenobiotic metabolism pathways over time. BEAS-2B cells were exposed to benzene, toluene, m-xylene, or mesitylene gaseous stream diluted in air using the Vitrocell ALI system.

 

Read more

Comments (0) Number of views (40)

2. Nov. 2020

Influence of the environmental relative humidity on the inflammatory response of skin model after exposure to various environmental pollutants

https://doi.org/10.1016/j.envres.2020.110350

Emeline Seurat a, Anthony Verdin b, Fabrice Cazier c, Dominique Courcot b, Richard Fitoussi d, Katell Vi´e d, Val´erie Desauziers e, Isabelle Momas a, Nathalie Seta a, Sophie Achard a
a Laboratoire de Sant´e Publique et Environnement, Hera “Health Environmental Risk Assessment”, Inserm UMR1153-CRESS (Centre de Recherche en Epid´emiologie et StatistiqueS), Universit´e de Paris, Facult´e de Pharmacie de Paris, 4, Avenue de L’Observatoire, 75006, Paris, France
b Unit´e de Chimie Environnementale et Interactions sur le Vivant UR4492, SFR Condorcet FR CNRS 3417, Maison de La Recherche en Environnement Industriel 2, Universit´e Du Littoral Cˆote D’Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
c Centre Commun de Mesures (CCM), Universit´e Du Littoral-Cˆote D’Opale, 145 Avenue Maurice Schumann, 5914, Dunkerque, France
d Laboratoires Clarins, 5 Rue Amp`ere, 95300, Pontoise, France
e IPREM, IMT Mines Ales, Universit´e de Pau et des Pays de L’Adour, E2S UPPA, CNRS, Pau, France

 

In the course of this study, they tested various pollutants with different chemical compositions, applying them to the apical side of Reconstructed Human Epidermis and being particularly interested in the effect relative humidity has on the reaction to pollutants. Investigating several cytokines and chemokines, they showed that IL-1α, IL-6, IL-8, and RANTES are the cytokines/chemokines almost systematically induced by most pollutants.

 

Read more

Comments (0) Number of views (92)

21. Oct. 2020

New Video: VITROCELL Cloud Alpha – for Aerosol Research and Cell Exposure at the Air/Liquid Interface (ALI)

Cell exposure system for virus research, testing of inhaled drugs, chemicals and nanoparticles at the Air/Liquid Interface (ALI).

The VITROCELL® Cloud Alpha series is our newest innovation and presents a great leap forward in automated exposure of cell cultures. It combines reliable exposure of cell cultures from the respiratory tract with ease of use. This series is our new take on the well-known and frequently published VITROCELL® Cloud systems (6-, 12- and 24-well). Its functionality enables fully automated processes with an all-in-one control unit. Everyday experiments at the air/liquid interface have never been easier. The Cloud system is suitable for nebulization of solutions and suspensions. Possible fields of application are screening of inhaled drugs, virus research toxicity testing of inhaled substances such as chemicals or nanoparticles.

In response to the scientific need to expose in physiologically relevant conditions, the VITROCELL® Cloud Alpha exposure devices have been specifically designed to enable direct exposure of mammalian cells or tissue at the Air/Liquid Interface. Here the cell cultures are not covered with media as opposed to submerged conditions which cause an undesired inter­action of the formerly airborne substances with the culture media.

The video explains the procedures of the experiment.

 

Read more

Comments (0) Number of views (511)

17. Oct. 2020

Cell‑specific toxicity of short‑term JUUL aerosol exposure to human bronchial epithelial cells and murine macrophages exposed at the air–liquid interface

https ://doi.org/10.1186/s1293 1-020-01539-1


Rakeysha Pinkston1,2, Hasan Zaman2, Ekhtear Hossain2, Arthur L. Penn2 and Alexandra Noël2
1 Department of Environmental Toxicology, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA 70813, USA. 
2 Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA.

 

There are thousands of flavors and flavoring combinations of e-liquids on the market with the potential to produce harmful effects when aerosolized through an ENDS device. While more research is needed regarding the potential toxicity associated with inhaling flavoring additives in combination with nicotine salt for future regulation of ENDS products, the present study provides laboratory-based evidence that should be considered regarding regulation of nicotine salt-based products.

 

Read more

Comments (0) Number of views (47)

8. Oct. 2020

Alternative air–liquid interface method for inhalation toxicity testing of a petroleum-derived substance

https://doi.org/10.1016/j.mex.2020.101088


Verstraelen Sandra a , Jacobs An a , Van Laer Jo a , Van Deun Masha b , Bertels Diane b , Hilda Witters a , Remy Sylvie a , c , Geerts Lieve a , Deferme Lize d , Frijns Evelien a
a VITO NV (Flemish Institute for Technological Research), Unit HEALTH, Mol, Belgium 
b VITO NV, Unit SCT (Separation and Conversion Technology), Mol, Belgium 
c Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium 
d ExxonMobil Petroleum and Chemical B.V., Machelen, Belgium

 

A549 cells were exposed to gasoline at the ALI by passive dosing, an approach that is already used in aquatic toxicity testing. This showes a clear dose-dependent biological response. This in vitro -based new approach methodology might be promising for inhalation toxicity testing of (semi-)volatile complex substances.

 

Read more

Comments (0) Number of views (41)

29. Sep. 2020

Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells—overview and perspectives

https://doi.org/10.1007/s11626-020-00517-7


Xuefei Cao1, Jayme P. Coyle2, Rui Xiong1, Yiying Wang1, Robert H. Heflich1, Baiping Ren1, William M. Gwinn3, Patrick Hayden4, Liying Rojanasakul2

1 Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR Jefferson, USA
2 Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers forDisease Control and Prevention,Morgantown,WV, USA
3 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, USA
4 BioSurfaces Inc., Ashland, MA, USA


One important element for validating any new assay for making regulatory decisions is determining its performance relative to an accepted standard. Conducting in vivo inhalation toxicity studies using whole-body or nose-only exposure systems is expensive and time-consuming and typically requires a large number of animals. The goal of using alternative methods, like human in vitro ALI airway cultures, ultimately is to replace inhalation toxicity testing in animals with in vitro approaches. Transition from animal- to human-based models is ultimately expected to lead to faster and better predictive toxicity assessments and therapeutic development at lower cost.  This study shows the development and validation of alternative in vitro methods for acute toxicity testing, including acute inhalation toxicity testing.
 

Read more

Comments (0) Number of views (78)

28. Sep. 2020

NanoCELL - Comprehensive characterization and human toxicological assessment of cellulose nanocrystals along their life cycle for reliable risk assessment

Yvonne Kohl1, Roland Drexel2, Christine Herrmann3, Stephan Dähnhardt-Pfeiffer4, Siegfried Fürtauer5, Michelle Hesler1, Christoph Metzger3, Marielle Fink6, Dominik Selzer7, Thorsten Lehr7, Tobias Krebs6, Sven van Lengen8, Sylvia Wagner1, Hagen von Briesen1, Felix Grimm9, Petra Weißhaupt10, Heiko Briesen3, Florian Meier2


1Fraunhofer-Institut für Biomedizinische Technik IBMT, Sulzbach, Germany; 
2Postnova Analytics GmbH, Landsberg, Germany, 
3Technische Universität München, Lehrstuhl für Systemverfahrenstechnik, Freising, Germany 
4Microscopy Services Dähnhardt GmbH, Flintbek, Germany
5Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV, Freising, Germany
6VITROCELL Systems GmbH, Waldkirch, Germany
7Universität des Saarlands, Klinische Pharmazie, Saarbrücken, Germany 
8GRÜNPERGA Papier GmbH, Grünhainichen, Germany 
9INFIANA Germany GmbH & Co. KG, Forchheim, Germany
10Umweltbundesamt, Dessau-Roßlau, Germany

 

This poster shows the hazard studies on the effect of oral and pulmonary CNC uptake. Therefore a miniaturized cloud exposure system has been developed to create an in vitro model simulating the lung and the GI tract.

 

Read more

Comments (0) Number of views (121)

18. Sep. 2020

VITROCELL® Shisha Testing System for Cell Cultures

For in vitro testing of water pipe tobacco at the air / liquid interface

New designs of electronic cigarettes such as ENDS (Electronic Nicotine Delivery Systems) products or HTP (Heated Tobacco Products) lead to a large variety of different shapes which make the insertion into conventional holders with labyrinth seals impossible. VITROCELL® has developed a new holder system which is flexible to adjust to different shapes.

VITROCELL Application Note

Read more

Comments (0) Number of views (384)
RSS
12345678910Last
Back to Top