Advanced in vitro exposure systems.

1. Nov. 2019

Electronic Cigarette Vapor With Nicotine Causes Airway Mucociliary Dysfunction Preferentially via TRPA1 Receptors

DOI: 10.1164/rccm.201811-2087OC


Samuel Chung 1 2, Nathalie Baumlin 1 2, John S Dennis 1 2, Robert Moore 2, Sebastian F Salathe 2, Phillip L Whitney 2, Juan Sabater 3, William M Abraham 3, Michael D Kim 1 2, Matthias Salathe 1 2
1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
2Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and.
3Department of Research, Mount Sinai Medical Center, Miami Beach, Florida.
 

The transient receptor potential ankyrin 1 (TRPA1) is a molecular target for vape effects due to its expression in airway epithelia and its reported gating by nicotine, reactive oxidants, and flavors, especially cinnamaldehyde. To test whether nicotine had effects independent of other e-cig vapor constituents, the Vitrocell® CLOUD exposure system was utilized to nebulize fixed nicotine doses onto the apical surface of ALI cultures. A549 cell cultures were exposed to nicotine containing e-cig vapor, produced by the VC-1 smoke exposure robot, in the air-liquid interface.

 

Read more

Comments (0) Number of views (207)

31. Oct. 2019

Deposition efficiency and uniformity of monodisperse solid particle deposition in the Vitrocell® 24/48 Air–Liquid-Interface in vitro exposure system

Aerosol Science and Technology

DOI: 10.1080/02786826.2019.1676877

Michael J. Oldhama , Nicolas Castroa, Jingjie Zhanga, Ali Rostamia, Francesco Luccib, Yezdi Pithawallaa,
Arkadiusz K. Kuczajb,c , I. Gene Gilmand, Pasha Kosachevskye, Julia Hoengb, and K. Monica Leea
aAltria Client Services, Richmond, Virginia, USA; 
bPhilip Morris International Research & Development, Philip Morris Products S.A. (part of Philip Morris International group of companies), Neuchatel, Switzerland; 
cMultiscale Modeling & Simulation, Department of Applied Mathematics, University of Twente, AE Enschede, The Netherlands; 
dEnthalpy Analytical, Durham, North Carolina, USA; eEnthalpy Analytical, Richmond, Virginia, USA

 

Monodispersed solid particles were used to investigate experimental measurement of deposition efficiency, variability of deposition efficiency within and between rows and uniformity of deposition across all cell culture inserts of the Vitrocell 24/48 ALI in vitro exposure system.

 

Read more

Comments (0) Number of views (1517)

25. Oct. 2019

VITROCELL® High Throughput Exposure Module: Deposition and Cytotoxicity of Smoke/Aerosol from Different Tobacco Product Types

User Group Meeting 2019

1Leverette R, 1Keyser B, 2Seymour A, 2Hollings M and 1Bombick B
1Scientific & Regulatory Affairs, RAI Services Company Winston-Salem, NC 27102
2Covance Laboratories Ltd Otley Road, Harrogate, North Yorkshire HG3 1PY, UK

Read more

Comments (0) Number of views (2299)

25. Oct. 2019

New holder for ENDS products for VITROCELL® Smoking Machines and Robots

User Group Meeting 2019

Bastian Gutmann, Tobias Krebs
VITROCELL Systems GmbH 79183 Waldkirch, Germany

The poster shows the new holder for ENDS products

Read more

Comments (0) Number of views (2086)

25. Oct. 2019

VITROCELL® Quality Management System Certification

User Group Meeting 2019

Patricia Hebestreit, Tobias Krebs
VITROCELL Systems GmbH 79183 Waldkirch, Germany

The poster shows our quality policy, we increase under ISO 9001:2015.

Read more

Comments (0) Number of views (1853)

Categories: Publications

Tags: User Group Meeting

15. Oct. 2019

Lung cell exposure to secondary photochemical aerosols generated from OH oxidation of cyclic siloxanes

DOI: 10.1016/j.chemosphere.2019.125126

Autors

King BM1, Janechek NJ1, Bryngelson N1, Adamcakova-Dodd A2, Lersch T3, Bunker K3, Casuccio G3, Thorne PS2, Stanier CO4, Fiegel J5.

1 Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA.
2 Department of Occupational and Environmental Health, The University of Iowa, 145 N. Riverside Dr., Iowa City, IA, 52242, USA.
3 RJ Lee Group, 350 Hochberg Road, Monroeville, PA, 15146, USA.
4 Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA. Electronic address: charles-stanier@uiowa.edu.
5 Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, 52242, USA. Electronic address: jennifer-fiegel@uiowa.edu.

 

Highlights
• Oxidative flow reactor used to study effects of secondary aerosols on lung cells.
• Nanoparticulate aerosols generated from OH oxidation of D5, a cyclic siloxane.
• Acute exposures to 54–116 ng/cm2 achieved using the air-liquid interface (ALI) system.
• Cytotoxic and proinflammatory effects marginal or absent at these doses.

 

Read more

Comments (0) Number of views (238)

7. Sep. 2019

Application of a multi‑layer systems toxicology framework for in vitro assessment of the biological effects of Classic Tobacco e‑liquid and its corresponding aerosol using an e‑cigarette device

https://doi.org/10.1007/s00204-019-02565-9


Anita R. Iskandar, Filippo Zanetti, Diego Marescotti, Bjorn Titz, Alain Sewer, Athanasios Kondylis, Patrice Leroy, Vincenzo Belcastro, Laura Ortega Torres, Stefano Acali, Shoaib Majeed, Sandro Steiner, Keyur Trivedi, Emmanuel Guedj, Celine Merg, Thomas Schneider, Stefan Frentzel, Florian Martin, Nikolai V. Ivanov, Manuel C. Peitsch, Julia Hoeng


Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland

Previous experimental setups shows the effects of e-liquids on cell viability (first layer), followed by investigating the potential mechanisms of toxicity elicited by e-liquids (second layer) and finally assessing the impacts of aerosols (third layer). In this present work shows how the three-layer framework is leveraged to evaluate the potential toxicity and biological effects of the MESH Classic Tobacco and Base e-liquids/aerosols compared with those of 3R4F CS.

 

Read more

Comments (0) Number of views (1977)

22. Aug. 2019

PETA International Science Group and Tobacco Companies Donate to Save Animals

PETA International Science Group and Tobacco Companies Donate to Save Animals

Gaithersburg, Md. – The PETA International Science Consortium Ltd., Imperial Brands PLC, Altria Client Services (ALCS), British American Tobacco (BAT) PLC, and Philip Morris International Inc have joined together to donate equipment that can help to replace the use of animals in respiratory testing with more human-relevant, non-animal test methods.

Read more

Comments (0) Number of views (2216)

Categories: Publications

Tags: VITROCELL 12

11. Aug. 2019

Exposure to aerosols from electronic cigarettes using the MESH™ technology has a reduced biological impact on bronchial epithelial cell cultures compared with exposure to cigarette smoke

Gordon Research Conference, Integration of Emerging Technologies in Mechanistic and Translational Toxicology,Andover, August 11–16, 2019

Albert Giralt, Florian Martin, Anita R. Iskandar, Alain Sewer, Laura Ortega Torres, AthanasiosKondylis, Patrice Leroy, Celine Merg, ShoaibMajeed, Emmanuel Guedj, Thomas Schneider, KeyurTrivedi, Stefan Frentzel, Nikolai V. Ivanov, Manuel C. Peitsch, Julia Hoeng


PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud5, CH-2000 Neuchâtel, Switzerland
 

In contrast to 3R4F CS exposure, exposure to IQOS MESH™ Classic Tobacco aerosols did not cause tissue damage or have an impact on ciliary beating functionality in bronchial epithelial cell cultures despite resulting in greater concentrations of deposited nicotine. Cultures exposed to IQOS MESH™ Classic Tobacco aerosols showed fewer changes in proteins involved in xenobiotic metabolism than those exposed to CS.

 

Read more

Comments (0) Number of views (982)

26. Jun. 2019

PETA Science Group Donates $50,000 in Equipment to Pioneering Laboratory

The Institute for In Vitro Sciences Will Use the Donation to Replace Animals in Respiratory Toxicity Testing

The PETA International Science Consortium Ltd. is donating $50,000 in equipment to the Institute for In Vitro Sciences (IIVS), a nonprofit laboratory in Gaithersburg that conducts and develops animal-free test methods. IIVS will use the VITROCELL® Cloud inhalation exposure system—instead of animals—to assess the effects of substances on the human respiratory tract.

Read more

Comments (0) Number of views (1606)

Categories: Publications

Tags: VITROCELL Cloud

RSS
12345678910Last
Back to Top